
Demo Abstract: A Serverless Approach to
Publish/Subscribe Systems

Faisal Hafeez
Technical University of Munich

faisal.hafeez@tum.de

Pezhman Nasirifard
Technical University of Munich

p.nasirifard@tum.de

Hans-Arno Jacobsen
Technical University of Munich

ABSTRACT
Building reliable and scalable publish/subscribe (pub/sub) systems
require tremendous development efforts. The serverless paradigm
simplifies the development and deployment of highly available
applications by delegating most of the operational concerns to the
cloud providers. The serverless paradigm describes a programming
model, where the developers break the application downs into
smaller microservices which run on the cloud in response to events.
In this paper, we propose a design of a serverless pub/sub system
based on the Amazon Web Services Lambdas and Microsoft Azure
Functions. Our pub/sub system performs topic-based, content-based
and function-based matchings. The function-based matching is a
novel matching approach where the subscribers can define highly
customizable subscription function which the broker applies to the
publications in the cloud. We also provide an evaluation application
for investigating the scalability of the designed brokers on different
serverless platforms.

CCS CONCEPTS
• Software and its engineering → Publish-subscribe / event-
based architectures; Cloud computing;

KEYWORDS
Serverless, Function as a service (FaaS), topic-based pub/sub, content-
based pub/sub, function-based pub/sub

1 INTRODUCTION
A pub/sub system relies on several middleware applications for
delivering the matching publications. However, developing a large-
scale distributed pub/sub system raises several concerns with scal-
ability, availability and fault tolerance. The serverless computing,
also known as the Function-as-a-Service (FaaS), represents a pro-
gramming model where the developers decompose the applications
into microservices, also known as functions, and deploy the func-
tions to the cloud. Next, cloud providers are responsible for execut-
ing the functions in response to events and also for performing the
automatic maintenance and scaling the resources. Despite several
apparent benefits of serverless resources, the short-lived stateless
nature of serverless functions introduces a new set of development
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’18, December 10–14, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6109-5/18/12. . . $15.00
https://doi.org/10.1145/3284014.3284019

challenges. In this paper, we present a pub/sub broker based on
AWS Lambdas1 and Azure Functions2 using JavaScript and C# lan-
guages. We employ two additional cloud resources to overcome
the limitation of serverless platforms. A Database-as-a-Service to
persist the state of the system and the cloud’s messaging queues
for delivering the publications. On Amazon, we use DynamoDB3,
and Azure provides Table storage4 to store data. Besides, Amazon
provides Simple Queue Service5 while Azure provides Service Bus6
messaging queues. Furthermore, we provide an evaluator applica-
tion for investigating the scalability and reliability of the brokers
on both platforms.

2 RELATEDWORK
Currently, all primary cloud providers offer serverless resources.
Although the studies on pub/sub systems based on serverless para-
digm is limited, some studies investigated the performance, scala-
bility, and applicability of various serverless platforms and different
factors affecting the performance of the platforms [1, 2]. In [3],
the authors proposed a basic pub/sub broker based on IBM Cloud
Functions. We extend their work by introducing function-based
matching and improving the performance by employing AWS and
Azure cloud providers to overcome the vendor-specific constraints
of IBM Cloud.

3 TECHNICAL APPROACH
A pub/sub system consists of three primary components: broker,
publishers, and subscribers. The broker is responsible for the deliv-
ery of publications based on a matching scheme. We decompose the
broker’s tasks into microservices which can be developed as server-
less functions. These functions can be divided into three categories:
subscribers registration or deregistration, creating subscriptions,
and submitting publications.

Once a subscriber registers to the system, the broker creates a
message queue instance for the subscriber and returns the connec-
tion details. Each subscriber uses a dedicated message queue for
receiving the publications. The subscriber can subscribe to vari-
ous subscriptions. The broker stores the subscriber message queue
information and the subscription type in the database. When a
publisher submits a publication along with the subscription type,
broker fetches the list of subscribers for the given subscription type
from the database and performs the matching scheme accordingly,
and finally forwards the matching publications.

1https://aws.amazon.com/lambda/
2https://azure.microsoft.com/en-us/services/functions/
3https://aws.amazon.com/dynamodb/
4https://azure.microsoft.com/en-us/services/storage/tables/
5https://aws.amazon.com/sqs/
6https://azure.microsoft.com/en-us/services/service-bus/

https://doi.org/10.1145/3284014.3284019
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/services/storage/tables/
https://aws.amazon.com/sqs/
https://azure.microsoft.com/en-us/services/service-bus/

Middleware ’18, December 10–14, 2018, Rennes, France F. Hafeez et al.

Register()

Subscriber

CreateQueue()
connectionString connectionString

Database

Publisher

Subscribe() SaveSubscriptionInfo
(function, subscriber)

subscribersInfo

Publish
(publication) GetSubscribers()

PublishTo
SubQueue()

ExecuteSubscriberFunction(publication)

Subscriber
Functions

output

Messaging
Queues

Serverless
Functions

Cloud Provider

Figure 1: Function-based matching sequence diagram.

The broker provides three types of matching methodologies.
While topic-based and content-based matchings are standards in
pub/sub systems, we introduce function-based matching in this pa-
per. Function-based matching is a novel and extremely expressive
matching approach. The subscribers submit matching functions
to a host, e.g., a serverless function, and send the address to the
function to the broker as a subscription. The matching function
can contain a Turing-complete code, which the serverless broker
applies to the content of the publication. If the content of the publi-
cation satisfies the logic of the function, the broker forwards the
matching publication to the filtered subscriber’s message queue.
We should emphasize that the matching function can contain any
arbitrary logic, from simple calculations to performing complex
image recognition methods. Figure 1 shows the system sequence
diagram for function-based matching.

We open-sourced the system, and the source code is publicly
available7.

4 SOFTWARE DEMONSTRATION
To investigate the scalability, extensibility, and latency of the bro-
kers onAmazon andAzure cloud providers, we provide a distributed
evaluation application that creates heavy workloads for the brokers.
The application can create several publishers and subscribers and
allows subscribers to create various subscriptions. The application
also allows the publishers to send publications for different subscrip-
tion types. Users can monitor the evaluation result in real-time. The
application provides an interface for the user to configure the eval-
uation parameters such the number of publishers and subscribers
and the publications throughput. The application enables the user
to quantify the scalability and latency of the broker in response
to the increasing number of subscribers and publications. Since
we are using two different cloud providers and two programming
languages for developing the functions, the application also helps
with comparing results for different implementations of the broker
and finding the potential bottlenecks of different cloud providers.
As an example, Figure 2 demonstrates the latency for delivery of 5
publications per second to 50 subscribers on AWS and Azure.

7https://github.com/i13tum/serverless-pubsub

Figure 2: Latency for delivering five publications per second
to 50 subscribers on AWS and Azure.

5 CONCLUSIONS
In this demo, we presented a pub/sub broker based on AWS and
Azure serverless platforms. The broker is capable of performing
topic-based, content-based, and function-based schemes. Further-
more, we provided evaluator application for investigating the per-
formance and latency of the broker on different platforms. As part
of our future work, we will compare the performance and scalability
of the proposed system with existing systems such as RabbitMQ,
ZeroMQ, and Apache Kafka.

ACKNOWLEDGMENTS
Alexander von Humboldt Foundation supported this project.

REFERENCES
[1] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. 2018. Serverless

Computing: An Investigation of Factors Influencing Microservice Performance. In
2018 IEEE International Conference on Cloud Engineering (IC2E). 159–169.

[2] G. McGrath and P. R. Brenner. 2017. Serverless Computing: Design, Implementa-
tion, and Performance. In 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW). 405–410.

[3] P. Nasirifard, A. Slominski, V. Muthusamy, V. Ishakian, and H. A. Jacobsen. 2017. A
Serverless Topic-based and Content-based Pub/Sub Broker: Demo. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos. ACM,
23–24.

https://github.com/i13tum/serverless-pubsub

	Abstract
	1 Introduction
	2 Related Work
	3 Technical Approach
	4 Software Demonstration
	5 Conclusions
	Acknowledgments
	References

