Demo Abstract: A Serverless Topic-Based and
Content-Based Pub/Sub Broker

Pezhman Nasirifard
Technical University of Munich
pezhman.nasirifard@in.tum.de

Vatche Ishakian
Bentley University
vishakian@bentley.edu

Abstract

Building scalable, highly available publish/subscribe (pub/sub)
systems can require sophisticated algorithms and a tremen-
dous amount of engineering effort. This paper demonstrates

a way to build a pub/sub broker on top of the OpenWhisk

serverless platform that performs topic-based and content-
based matching. This approach radically simplifies the de-
sign and significantly reduces the amount of code while

still achieving scalability targets. Furthermore, we present

a publisher/subscriber client application to interact with

the broker as well as an evaluator application that enforces

heavy workload on the broker to measure the scalability and

latency of the pub/sub system and discover the potential

bottlenecks.

CCS Concepts «Software and its engineering — Publish-

subscribe / event-based architectures; Cloud comput-
ing;

Keywords Serverless, Function as a service(FaaS), Open-
Whisk, topic-based pub/sub, content-based pub/sub

1 Introduction

Implementation of scalable production-grade server applica-
tions, such as pub/sub brokers, demands significant develop-
ment effort and resources to guarantee stability, performance
and fault tolerance. Recently, all primary cloud vendors start
offering serverless computing resources to host and main-
tain scalable server applications. The serverless paradigm
describes a programming model where the developer de-
ploys a microservice, also known as a function, to the cloud,
where the cloud provider takes responsibility for managing
the resource for executing the functions. While a serverless

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Middleware Posters and Demos °17, December 11-15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5201-7/17/12.
https://doi.org/10.1145/3155016.3155024

Aleksander Slominski
IBM Research
aslom@us.ibm.com

Vinod Muthusamy
IBM Research
vmuthus@us.ibm.com

Hans-Arno Jacobsen

Middleware Systems Research Group

jacobsen@in.tum.de

platform provides powerful scalability and availability prop-
erties, building a pub/sub system on such a platform is not a
simple matter of packaging existing pub/sub components as
serverless functions. There are platform constraints, such as
the stateless and short-lived nature of serverless functions,
that necessitate additional components and careful design.
For example, in this paper serverless functions are used to
compute the matching logic, but these are augmented by a
managed database service to store subscription state, and
an IoT service to deliver notifications. Although integrating
additional services can compensate for the serverless limita-
tions, the restrictions on the scalability of the services can be
a potential bottleneck to the scalability of the whole server-
less architecture. In this demo, we present a scalable server-
less topic-based and content-based pub/sub broker based on
IBM OpenWhisk [1]. We also provide publisher/subscriber
and evaluator applications to interact with the broker and
evaluate its capabilities and realize its limitations.

2 Related Work

The serverless paradigm is rather new, and studies on build-
ing pub/sub systems based on serverless platforms are rare
[4]. However, various serverless use cases have been ex-
plored to inspect different aspects of serverless environ-
ments. Fouladi et al. [5] present a low latency serverless
high-definition video processing system and Yan et al. [6]
demonstrate a chatbot with a serverless backend. They both
argue that utilizing serverless recourses significantly reduces
the development efforts while maintaining the scalability
and reliability of the system.

3 The Serverless Broker’s Overview

We break down and encapsulate the functional and nonfunc-
tional requirements of the broker into subsystems which we
can realize and deploy as OpenWhisk functions. A pub/sub
system consists of three primary components, including bro-
kers, publishers, and subscribers. The pub/sub broker re-
quires persisting the state of subscriptions to perform the
matching. However, since the OpenWhisk functions are in-
herently stateless, we integrate the IBM Cloudant NoSQL


https://doi.org/10.1145/3155016.3155024

Middleware Posters and Demos *17, December 11-15, 2017, Las Vegas, NV, USA

M Publisher Side

Serverless Broker

Topic-based Matching

Receive Publication

(Invoke in Parallel)

Write Publication to Perform Topic-based
Cloudant DB Matching

Send the Publication
to Subscribers

Cloudant DB Watson loT
Subscriber Side

Serverless Broker

Content-based Matching

Receive Publication

.Fe":h q Fetch Subscriber's
Subscribers Diodicates
Perform Subscription
Matching and Forward
Matching Publications
. = o |
Y K
Cloudant DB Watson loT
Subscriber Side

Figure 2. The content-based matching workflow.

database [2], an auto scalable Database-as-a-Service to main-
tain the state of the system.

To perform the matching, we chain several functions which
are activated upon receiving publications, as illustrated in
Figures 1 and 2 for topic-based and content-based match-
ing respectively. In both scenarios, the publisher client dis-
patches a publication to the broker. Next, the function re-
trieves the subscriptions from Cloudant DB and passes the
publications and subscriptions to an additional function as
an input to perform the matching. Finally, the broker sends
the matching subscribers to the Watson IoT Platform [3],
which forwards the publication to the subscriber client using
a real-time bi-directional communication channel.

P. Nasirifard et al.

4 Software Demonstration

To demonstrate the capabilities of the serverless broker, we
provide a publisher/subscriber desktop application to inter-
act with the broker. The application enables the users to
unsubscribe/subscribe to subscriptions. Users can also make
use of the publisher client to issue publications and observe
the delivery of matching publications on the subscriber client
in real-time.

Moreover, to evaluate the scalability and extensibility of
the broker, we offer an evaluator application that creates
heavy workloads for the broker by running up to 1000 sub-
scriber instances simultaneously and issuing up to 1000 pub-
lications with 100 ms delay between each publication. Mean-
while, the application measures the latency of the broker and
provides the user with evaluation result which helps with
detecting the potential bottlenecks of the system.

The evaluator application shows that the serverless broker
scales in response to the increasing workload of subscribers
and publications. However, the vendor-specific constraints
on OpenWhisk and Cloudant DB, which limits the number
of parallel function invocations and database interactions
per second, are bottlenecks to the scalability and enforce a
threshold to the number of subscribers running simultane-
ously as well as the number of issued publications.

5 Conclusions

In this demo, we present an automatically scalable serverless
approach to a pub/sub broker based on IBM OpenWhisk
which is capable of performing complex topic-based and
content-based matching. Furthermore, we provide a pub-
lisher/subscriber applications to interact with the broker as
well as an evaluator application for measuring the perfor-
mance and discovering the bottlenecks of the design.

References

[1] 2017. IBM Bluemix OpenWhisk. https://azure.microsoft.com. (August
2017). Accessed: 2017-08-22.

[2] 2017. IBM Cloudant DB. https://www.ibm.com/analytics/us/en/

technology/cloud-data-services/cloudant/. (August 2017). Accessed:

2017-08-10.

2017. IBM Watson Internet of Things (IoT). https://www.ibm.com/

internet-of-things/. (August 2017). Accessed: 2017-08-11.

[4] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander

Slominski. 2017. Serverless Programming (Function as a Service). In

2017 IEEE 37th International Conference on Distributed Computing Sys-

tems (ICDCS).

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki

Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,

George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-

Latency Video Processing Using Thousands of Tiny Threads. In 14th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 17).

Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. 2016.

Building a Chatbot with Serverless Computing. In Proceedings of the 1st

International Workshop on Mashups of Things and APIs (MOTA ’16).

—

[3

—_

[5

—_

G

—


https://azure.microsoft.com
https://www.ibm.com/analytics/us/en/technology/cloud-data-services/cloudant/
https://www.ibm.com/analytics/us/en/technology/cloud-data-services/cloudant/
https://www.ibm.com/internet-of-things/
https://www.ibm.com/internet-of-things/

	Abstract
	1 Introduction
	2 Related Work
	3 The Serverless Broker's Overview
	4 Software Demonstration
	5 Conclusions
	References

