
Demo Abstract: A Distributed Analysis and Benchmarking
Framework for Apache OpenWhisk Serverless Platform
Aleksandr Kuntsevich

Technical University of Munich
a.kuntsevich@tum.de

Pezhman Nasirifard
Technical University of Munich

p.nasirifard@tum.de

Hans-Arno Jacobsen
Technical University of Munich

ABSTRACT
Serverless computing simplifies the life cycle of scalable web ap-
plications, through delegating most of the operational concerns to
the cloud providers. One prominent serverless platform is Apache
OpenWhisk which is employed by IBM Cloud. Despite the apparent
benefits of serverless computing, some limitations of the serverless
platform, such as the state-less nature of serverless functions, can in-
troduce scalability bottlenecks. In this work, we propose an analysis
and benchmarking approach for investigating potential bottlenecks
and limitations of Apache OpenWhisk serverless platform.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;

KEYWORDS
Serverless, Apache OpenWhisk, Function as a service (FaaS), Bench-
marking

1 INTRODUCTION
The serverless computing, also known as Function-as-a-Service
(FaaS), represents a programming model where the developers
decompose the applications into microservices, known as func-
tions, and deploy the functions on the cloud platforms. The cloud
providers are responsible for executing the functions in response
to events as well as the automatic maintenance and scaling of re-
sources. Apache OpenWhisk1 is a production-grade open source
serverless platform which is the base of IBM Cloud Functions. Al-
though serverless paradigm offers several advantages for develop-
ing scalable distributed applications, the limitations, such as the
short-lived stateless nature of the serverless functions, can cause
scalability bottlenecks. To compensate for the lack of state, inte-
grating other cloud resources, such as Database-as-a-Services is a
practiced solution, but the scalability of external resources affects
the scalability of the serverless application [4]. Furthermore, the
automatic scaling offered by OpenWhisk is not predictable by the
user, which can cause latency bottlenecks. For example, when the

1https://openwhisk.apache.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’18, December 10–14, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6109-5/18/12. . . $15.00
https://doi.org/10.1145/3284014.3284016

Figure 1: Deployment diagram of the framework.

function is scaled down, the cold start problem causes latency is-
sues [1]. In this work, we propose a benchmarking and analysis
framework for executing various types of tests for investigating
the potential OpenWhisk bottlenecks.

2 RELATEDWORK
A few studies proposed benchmarking and analysis approaches for
different serverless platforms [2, 3]. [3] developed a general cloud
function benchmarking framework with CPU-intensive bench-
marks for comparing the performance of several serverless plat-
forms, including Apache OpenWhisk. In this work, we propose
a benchmarking framework designed explicitly for OpenWhisk
and for investigating its potential bottlenecks. Furthermore, SPEC-
serverless [2] is purposed by IBM with the objective of creating
standard tests for defining the baseline performance of different
serverless platforms, but they have not published the benchmarks
yet to the best of our knowledge.

3 TECHNICAL APPROACH
We propose several test functions for various serverless use cases.
We developed an analytical framework for executing the tests on a
custom installation of OpenWhisk and also a server-based appli-
cation. Furthermore, the system gathers the test metrics. Figure 1
displays the deployment diagram.

3.1 OpenWhisk Set Up
To provide a testing environment that is not restricted by the cloud
provider’s constraints, we instrumented a distributed installation
of an instance of OpenWhisk on a private cloud provided by our

https://openwhisk.apache.org/
https://doi.org/10.1145/3284014.3284016

Middleware ’18, December 10–14, 2018, Rennes, France A. Kuntsevich et al.

institute. We employed four Ubuntu 16.04 virtual machines with
1 VCPU, 2.4 GB of RAM and one VM with 4 VCPUs, 9.8 GB RAM.
One of the essential components of OpenWhisk is Invoker, which
is responsible for handling the requests for function invocations.
OpenWhisk also makes use of an internal load balancer for dis-
tributing the requests among the four installed invokers, as Figure
1 depicts.

3.2 Server Based Application
To examine the performance of OpenWhisk in comparison to a
standard web application, and to investigate when traditional de-
ploymentmodels aremore reasonable, we developed a simple server
application for executing test functions identical to the tests on the
OpenWhisk. The deployed server application is implemented in
Spring Boot Framework2 and provides a REST API. We deployed
the application on a Kubernetes cluster consisting of five Ubuntu
16.04 virtual machines with allocated resources identical to the VMs
used for hosting the OpenWhisk.

3.3 Tester Application
Wedeveloped a stand-alone tester application for issuing requests to
the OpenWhisk and the server application. We deployed the tester
application across four VMs, where each VM is configured with an
OpenWhisk CLI and its OpenWhisk user, that allows the tester to
perform different test scenarios independently and in parallel. We
define the following parameters for testing scenarios: the number of
concurrent requests sent from each tester application, the frequency
of the issued requests, and the input of the function to define how
resource intensive the execution is.

3.4 Test Functions
We define the following test function for executing on the platform:

• Calculation of the Nth prime number, given the N as the
input. Provided the N is large enough, the calculation is CPU
intensive.

• Computation of the matrix multiplication, which is RAM
and CPU intensive.

• Requesting an external web resource, which shows potential
I/O bottlenecks. E.g., for scenarios when IoT devices require
some resources.

• Performing a query on a separate database for demonstrating
another potential I/O bottlenecks.

3.5 Gathering Test Metrics
The test functions are implemented in JavaScript and Java, and
the tester applications execute the functions according to the test
scenarios. Furthermore, system metrics are monitored, including
the CPU, RAM, disk usage and the latency for executing function
invocations. The system metrics measure the latency of function
invocations, concerning the cold start problem, and how the system
scales up and down. As an example, Figure 2 presents the latency
for the increasing number of requests of the OpenWhisk functions
written in Java and JavaScript in comparison to the Spring web-
based application executing the same function. In this scenario, we

2https://spring.io/projects/spring-boot

Figure 2: Executing the calculation ofNthprimenumber test
scenario.

used the test function for calculating the Nth prime number.

We open-sourced the system, and the source code is publicly
available3.

4 CONCLUSIONS
In this demo, we proposed a technical solution for benchmarking
and analysis of Apache OpenWhisk platform by using a set of test
functions. This framework provides an opportunity to investigate
potential bottlenecks and limitations of OpenWhisk.

ACKNOWLEDGMENTS
Alexander von Humboldt Foundation supported this project.

REFERENCES
[1] I. Baldini, P. C. Castro, K. Chang, P. Cheng, S. J. Fink, V. Ishakian, N. Mitchell, V.

Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter. 2017. Serverless Computing:
Current Trends and Open Problems. Springer Singapore.

[2] N. Kaviani and M. Maximilien. 2018. CF Serverless: Attempts at a
Benchmark for Serverless Computing. https://docs.google.com/document/d/
1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg/edit. Accessed: 2018-
08-16.

[3] M. Malawski, K. Figiela, A. Gajek, and A. Zima. 2018. Benchmarking Heteroge-
neous Cloud Functions. In Euro-Par 2017: Parallel Processing Workshops. Springer
International Publishing.

[4] P. Nasirifard, A. Slominski, V. Muthusamy, V. Ishakian, and H. A. Jacobsen. 2017. A
Serverless Topic-based and Content-based Pub/Sub Broker: Demo. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos. ACM.

3https://github.com/i13tum/openwhisk-bench

https://spring.io/projects/spring-boot
https://docs.google.com/document/d/1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg/edit
https://docs.google.com/document/d/1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg/edit
https://github.com/i13tum/openwhisk-bench

	Abstract
	1 Introduction
	2 Related Work
	3 Technical Approach
	3.1 OpenWhisk Set Up
	3.2 Server Based Application
	3.3 Tester Application
	3.4 Test Functions
	3.5 Gathering Test Metrics

	4 Conclusions
	Acknowledgments
	References

