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Abstract—Distribution System Operators (DSOs) face several challenges in managing comprehensive and up-to-date models of
distribution grids. To address these problems, we propose a crowdsourcing framework for collecting grid devices. We also provide an
inference approach for generating topological models of the distribution grids. Since distribution cables are often underground, we use
spatial data analytics on the collected data in combination with other open data sources to infer the topology of the distribution grid.
Additionally, to increase the quality of crowdsourced data, we propose a cost-effective approach for collecting and detecting grid
elements in urban areas using commercial drones with an RGB camera. To evaluate our approach, we organized a crowdsourcing
campaign to map and infer a district in Munich, Germany. The results are compared with the ground truth of the distribution system
operator. Our results report a precision of up to 82% and a recall of up to 65% for the correctly crowdsourced grid devices. We also
observe that the inferred models achieve a power length accuracy of 88% compared to the ground truth. We evaluated the detection of
solar panels from aerial imagery by conducting field experiments, showing precision and recall levels of 68% and 69%, respectively.
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1 INTRODUCTION

O VER the past few years, the majority of the interna-
tional community has grown increasingly committed

to the reduction in greenhouse gases, especially CO2 emis-
sions [1]. Since the electric power industry is responsible
for producing a significant portion of the CO2 emissions
[2], researchers and practitioners have proposed several
approaches to address these issues by facilitating further
integration of renewable resources such as solar energy and
introducing new electrical devices such as electric vehicles
and local storage units [3]. However, before implementing
the proposed solutions, the practicality and stability of the
approaches should be comprehensively evaluated based on
the actual distribution grid models. Nevertheless, the ma-
jority of studies are based on standardized test feeders, such
as the IEEE test feeders [4], PNNL feeders [5] and CIGRE
test feeders [6], which are considerably simplified models
and fail to reflect the complexity, geographic features, and
limitations of real individual power grids. Although some
distribution system operators (DSOs) maintain digitized
models of their grids, the operators do not publicly publish
the grid models due to security and legal reasons. Addition-
ally, in several cases, the grid data, especially for distribution
grids, are either incomplete or outdated, and information
regarding solar power capacity and locations of solar panel
installations at a granular geographical scale is scarce. Addi-
tionally, periodically collecting and updating the grid data
are time consuming, intrusive, and a significant financial
burden for operators [7].

In this paper, we introduce a nonintrusive crowdsourc-
ing framework for collecting and inferring distribution grid

Hans-Arno Jacobsen, Pezhman Nasirifard, Jose Rivera, and Prerona Ray
Baruah are with the Department of Computer Science, Technical University of
Munich, D-85748, Garching, Germany. (p.nasirifard@tum.de)

models. The crowdsourcing approach considerably reduces
the cost, effort, and time required for gathering grid data by
distributing the data collection tasks among the crowd. Fur-
thermore, to improve the quality of the collected grid data,
we merge the crowdsourced grid data with the extracted
distribution grid elements from free and publicly available
OpenStreetMap (OSM) data [8]. Moreover, we propose an
approach for inferring a distribution grid topological model
for a particular region based on the position of grid devices
and the spatial features of the area.

To capture, analyze, and model the medium- and low-
voltage grid models, the power industry has been utiliz-
ing geographic information systems (GIS) for a long time.
However, no utility manages to maintain the most up-to-
date and exhaustive model of their grids [9]. The novelty of
our work lies in implementing a complete crowdsourcing
framework for gradually and consistently collecting valid
and verified grid data, which we use for inferring accurate
grid models. In this work, we also explain how to conduct a
crowdsourcing campaign based on our framework. We use
the result of the crowdsourcing campaign to evaluate the
performance of the participants and confirm the practicality
of crowdsourced grid data in comparison to official grid
data provided by the distribution grid operator.

Accurate and complete data regarding solar panels in
urban areas, especially the panels mounted on rooftops,
have to be collected manually. Although crowdsourcing is
a potentially practical approach for collecting such devices,
it is challenging for the crowd on the ground to identify
and capture the solar panels that are installed on the higher
elevation of buildings rooftops. Therefore, we propose an
approach for detecting solar panel installations in urban
areas from aerial images obtained with an affordable
commercial drone equipped with an RGB camera. Most
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previous works focused on the detection of solar panels
installed in solar farms from drone and satellite imagery
[10]. However, urban areas have more obstructions than
solar farms, such as buildings and vegetation, which makes
the recognition of solar panels more challenging.

We recognize the following contributions in this paper:

1) We introduce a crowdsourcing framework for col-
lecting, verifying, storing, and publishing power
grid elements.

2) We design and conduct a crowdsourcing campaign
with several participants, where evaluation of the
acquired data verifies crowdsourcing as a practical
approach for collecting and maintaining the grid
data.

3) We propose an inference approach for generating
distribution grid models of an area based on the
geographical position of power grid elements, the
consumer endpoints, and the pathway’s structure
of the area.

4) We implement an approach for automatic detection
of solar panels in urban areas from images collected
by drones equipped with an RGB camera.

We structure the rest of the paper as follows: In Section
2, we review the previous works on crowdsourcing and
inference approaches for the distribution grids that we build
on. In Section 3, we introduce the platform we built for
executing the crowdsourcing event. Then, we discuss our
crowdsourcing framework and describe the insights and
results derived from the conducted crowdsourcing cam-
paign in Section 4, where we also explain the surveyed
feedback of the participants and evaluate the quality of
the crowdsourced grid data. In Section 5, we describe and
evaluate the inference approach for generating distribution
grid models, followed by Section 6, where we explain our
approach for detecting solar panels from drone imagery. In
Section 7, we discuss the results and limitations of our work.
Finally, in Section 8, we provide concluding remarks and
describe future works.

2 RELATED WORK

Crowdsourcing is a time-efficient and cost-effective method
for collecting detailed and highly accurate geographical
data, including electrical grid elements [11], [12]. However,
there has not been a coherent crowdsourcing approach
for collecting electrical grid devices. A potential resource
of crowdsourced power-related data is OSM, which uses
a community approach to locate and map the physical
structures in an area. As of December 2018, OSM con-
tains approximately 18 million components marked with
power-related tags all around the globe [13]. However, the
majority of the power-related OSM data are transmission-
level elements. Medium- and low-voltage grid devices are
scarce in OSM. Furthermore, the OSM community often
tags the power-related components with wrong values due
to the lack of expert knowledge or just errors; e.g., some
transformers are marked as cable cabinets. An approach for
crowdsourcing grid data and integrating the collected data
with OSM data is presented in [14]. We extend the previous

works by improving the crowdsourcing approach by de-
signing a robust crowdsourcing framework as a supplement
to OSM grid data to take advantage of all available datasets
and to record grid elements for inferring distribution mod-
els. Moreover, we provide an evaluation of the approach
against a ground truth, which was missing in the literature.

The studies on inferring topological models of distri-
bution grids are somewhat limited [15]. Although several
studies propose approaches for inferring topological models
of transmission grids based on complex network theories
and some from OSM data [16]–[21], these approaches do not
apply to distribution grids. The main reasons are that the
distribution grid components and structures are inherently
different, the number of devices in distribution grids is more
extensive than transmission grids, and the structures tend
to be more complicated than in transmission grids. These
challenges make distribution networks much more difficult
to map and to build accurate models.

Furthermore, in contrast to transmission grid elements,
in many countries, a significant portion of distribution-level
grid elements are underground; e.g., in Germany, 73 percent
of the medium-voltage and 87 percent of low-voltage cables
are buried [22]. As a result, locating the accurate geographi-
cal position of grid components and their characteristics can
be very challenging and require several assumptions and
background knowledge.

Nevertheless, some studies propose intrusive methods
for inferring distribution grid topologies based on the inter-
action among grid devices. In [23], the authors propose an
approach for decentralized inference of distribution grids
based on communication among a set of autonomous in-
telligent agents on an overlay network. In [24], they es-
timate the grid topology by applying correlation analysis
on the voltage amplitude measurements of grid endpoints.
However, none of these approaches consider geographical
characteristics, and they require detailed information about
the grid and interaction with grid elements, which we
cannot apply to crowdsourced grid data. One similar area
to our inference challenge is planning optimal and cost-
efficient distribution grid systems based on the location of
expected consumers, where the applications of a genetic
algorithm and graph theory are accepted methods [25], [26].
Therefore, in this work, we use spatial analysis and graph
theory for inferring distribution models when the location
of the grid devices, consumers, and structure of the region is
known. We differentiate ourselves from previous works in
the combination of crowdsourcing and inference approaches
to infer real power distribution grids. Moreover, our method
is nonintrusive; i.e., we only require device locations and no
grid measurements. Finally, in contrast to other works, we
conduct field experiments and compare our results to the
ground truth of the distribution grid operator.

Detection of solar panels from aerial imagery is often
limited to satellite images [27]–[30] and analysis of solar
farms with the aid of thermal cameras [31]. In [10], the
authors proposed an approach for detecting solar panels
using drones equipped with an infrared camera by ap-
plying image processing techniques such as thermal-based
thresholding, contour detection, and morphological closing.
However, this method does not apply to urban areas due to
obstructions. Additionally, thermal cameras are expensive,
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making this approach not cost-effective. The authors of [27],
[28] proposed an approach for detecting solar photovoltaic
arrays from satellite images using random forest classifiers.
The authors used the dataset of an American city in which
the resolution of images was limited to 30 cm. The same
dataset was used by the authors of [29] to detect solar arrays
using a deep convolutional neural network (CNN), which
yielded better results than the random forest approach. The
authors of [30] used a dataset of annotated satellite images
from Google Earth to estimate the electrical capacity of
small-scale solar panels. In [32], the authors introduced a
method for detecting regions with solar panels from satellite
images, using an SVM classifier to classify the regions based
on their unique features. However, their approach does not
count the number of solar panels; hence, it is not able to
estimate the solar power production.

The detection of individual solar panels from satellite
images is a challenging task due to the low resolution of
images. The highest ground resolution available currently is
31 cm from the Worldview-4 Satellite [33], which refers to the
pitch or length of the side of a pixel. Thus, a constant error
of 31 cm is always present. Given that a solar panel is made
up of 5 pixels in an image, the calculated length of the panel
may have a least count error of 31 cm ( 20%), which would
significantly negatively affect results. In contrast, the pitch
of a pixel of the images captured by the used drone at an
altitude of 50 meters is approximately 2.5 cm [34]. Hence,
the area covered by 1 pixel is much smaller. A smaller pitch
leads to higher accuracy in the detection of small features,
such as solar panels [35]. In our approach, we use widely
available and cost-effective RGB cameras, which capture 4K
images, enabling us to detect solar panels in urban areas.

3 OPENGRIDMAP CROWDSOURCING PLATFORM

Our crowdsourcing campaign heavily makes use of the
OpenGridMap (OGM) project [36]. The OGM project offers
a platform for collecting, organizing, and openly publishing
a broad range of transmission and distribution grid data
and models. Additionally, OGM provides researchers and
practitioners with a crowdsourcing platform for collecting
high-, medium-, and low-voltage-level grid devices. OGM
extracts and combines the power-related grid data of OSM
with the verified submissions of volunteers. For example,
electrical utility crews can use the OGM platform to record
the continuously changing electrical grid to maintain the
most recent information of the grid.

The OGM crowdsourcing platform consists of two pri-
mary components, including a smartphone application and
a web application. The OGM Android application is avail-
able free of charge on the Google PlayStore [37]. The partic-
ipants of the crowdsourcing activity are required to down-
load and install this application on their phone. Afterward,
the participants follow a simple procedure for submitting
the grid element upon identifying the element in their sur-
roundings. First, the participants should select the type of
discovered grid device. Then, the participants take a picture
of the grid device with the application and review the
location of the device on the map obtained from the location
service of the smartphone. Since the location service may not
be accurate, the participants can edit the location of the grid

device manually. Finally, participants submit the recorded
grid element to the OGM servers either immediately or
when the smartphone has access to a WiFi connection. On
the OGM web application, the expert in the loop reviews
and accepts the submitted grid elements. The expert has
the option of examining the grid element; correcting the
assigned metadata, such as the type of device; and merging
the device with existing devices to avoid duplicate entries.

4 CROWDSOURCING DISTRIBUTION GRID DATA

In the following section, we describe the designed and
developed crowdsourcing framework for collecting distri-
bution grid devices. We also performed a crowdsourcing
campaign in the Freimann district of Munich, Germany. A
comparison with the ground truth reveals that crowdsourc-
ing is a practical method for mapping distribution grid.

4.1 Crowdsourcing Framework
Crowdsourcing provides an appealing option for collecting
distribution grid data because the grid devices are widely
distributed and their positions are previously unknown
[38]. Nevertheless, we require a consistent framework to
clarify and divide up the data collection activity into smaller,
precise, and realizable tasks that several participants can
accomplish independently and in parallel. We base our
crowdsourcing framework on the collective intelligence
framework developed by Malone et al. at MIT’s Center for
Collective Intelligence [38]. Malone’s framework consists of
four elements, also known as “genes”, that are required for
recognizing the building blocks of collective intelligence.
The four elements are described as the four fundamental
questions of ”Who, Why, What and How”, which we utilize
to structure our crowdsourcing method.

The detailed description of Malone’s framework is out of
the scope of this paper. According to Malone’s framework,
we identify the following requirements and attributes of an
organized crowdsourcing campaign for collecting distribu-
tion grid devices:

• We require the crowdsourcing movement to be rele-
vant anywhere on the planet, independent of the geo-
graphical location and participants’ previous knowl-
edge and training. Therefore, we utilize a custom-
designed smartphone application with a simplified
data collection procedure as a medium for collect-
ing the grid data. Due to the high prevalence of
smartphones, the application can be used by any
participant without requiring any previous training.

• Since any practical crowdsourcing activity depends
on the number of participants, providing an ap-
propriate incentive for the participants is crucial.
Therefore, we present the participants with a detailed
description of the project and its objectives, empha-
sizing the project’s potential for reducing greenhouse
gases and integrating renewable energy resources,
presumably increasing the intrinsic joy of the par-
ticipants in engaging in such a community.

• The distribution grid devices have a wide range of
designs and types. However, we require collecting
only specific devices such as transformers and cable
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cabinets. Therefore, we provide the participants with
a protocol, explicitly defining the type of necessary
grid elements and the tasks that they need to fulfill.
Because we presume that the participants do not
have any previous training and they may detect
incorrect grid devices, we verify the validity of the
collected grid elements after the crowdsourcing cam-
paign with the help of an expert in the loop.

• To break down the crowdsourcing activity into rec-
ognizable smaller tasks, we divide the data collection
region into smaller subareas, and we assign each sub-
area to a group of participants. However, to prevent
any potential duplicate recordings, the expert in the
loop monitors the elements based on their position
and removes the duplicated entries.

Accordingly, any crowdsourcing event that we manage
follows a precise procedure. First, before beginning the
crowdsourcing event, we hold a preliminary meeting with
all participants to describe the objectives of the event and
build a group of two persons. To increase the community
spirit of participants and incentivize them better, we explain
the objectives and benefits of their contributions clearly
and discuss how their contribution could potentially help
researchers with finding new solutions for challenges facing
the electrical grids, namely, integrating renewable energy
resources that could lead to addressing climate change.

Each group receives a package containing the group
protocol and a stamped letter describing the intentions of
the crowdsourcing campaign that they present to the police
or other security personnel in case of any inquiry. We also
provide an agenda that uses visual examples to explain the
conventional design, signs, and characteristics of the desired
grid devices specific to the area.

In each group, one person has the role of navigator,
and the other serves as a data collector. The group navi-
gator has the responsibility of filling the group’s protocol
and navigating the group through the area during the
crowdsourcing event. The collector follows the navigator
and carefully monitors the area for the requested power
devices, and upon identifying a new grid device, the collec-
tor snapshots and submits the element by using the OGM
smartphone application. The group protocol, completed by
the navigator, contains a printed map of the area assigned
to the group. The navigator marks the streets and paths
that are covered by the group. Furthermore, in the case
of failing to inspect some parts of the area, due to time
limitations or lack of accessibility, the navigator marks the
missing parts on the protocol’s map and documents the
reason. To prevent losing any collected grid data due to
any unexpected OGM platform failures, the navigator keeps
a list of discovered transformers on the protocol’s map.
Additionally, the navigator keeps a record of the number of
identified transformers and cable cabinets in the protocol.

To increase the safety of the participants, we introduce
a few obligatory rules that all participants are required to
follow. We prohibit participants from trespassing in any mil-
itary, industrial, or private properties. Only power devices
that are observable from the streets and public areas should
be recorded. Furthermore, we provide the participants with
phone numbers of the event’s organizers, whom they can

reach in case of an emergency.

4.2 Crowdsourcing Campaign in Munich Freimann
To measure the quality of our framework, we organized
and conducted a crowdsourcing campaign in the German
city of Munich’s Freimann district on the 9th of May 2017
[39]. We selected the Freimann district because we received
the official distribution grid data from Stadtwerke München
(SWM) [40], the Munich city utilities, and DSO, which we
use as the basis for our evaluation.

Initially, we divided up the Freimann district into several
subareas with approximately equal areas. However, since
we recruited only 22 participants for the crowdsourcing
event, we covered eleven areas with two persons assigned
to each area, and we gave each group 90 minutes to perform
the mapping in the designated area. Although we did not
record the exact distance each group traversed, we intended
each group to cover 4 kilometres of routes on average.
Furthermore, since participants installed the application on
their phones, their participation did not enforce any initial
cost on us. Although the OGM crowdsourcing platform is
capable of storing any distribution of grid devices, for the
sake of simplicity, we asked the participants to collect only
transformers and cable cabinets in their area. In the agenda,
we provided detailed information about the transformers
and cables cabinets used by SWM, Munich’s DSO. We
should mention that after the end of the crowdsourcing
event, we offered an incentive (in the form of gift cards)
to the best performing group.

After the event, we used a questionnaire to survey the
overall crowdsourcing experience of all participants. We
include the complete result of the survey in the appendix1

and briefly explain the most interesting responses. In gen-
eral, the results are in the affirmative upper third in all
indicators, confirming that the participants are satisfied with
the organization and execution of the OGM crowdsourcing
platform and our framework. Furthermore, for the signif-
icant majority of the participants, the community spirit
is a more valuable incentive than monetary prizes when
deciding to join the event, indicating that our community-
spirit-oriented incentives were attractive to the participants.

Although 75% of the participants expressed willingness
to participate in such a crowdsourcing event again, we must
remark that recruiting a large number of participants is
challenging. We recruited 70% percent of the participants
from the course instructed by one of the event organizers,
and their friends informed the rest of the participants; no
participant discovered the event from the public Facebook
event we had created two months before the event. There-
fore, we suggest investing enough time and publicity for
gathering participants before any crowdsourcing event.

Finally, the survey reveals that identifying distribution
grid devices is a challenging task because the grid devices
are well hidden. However, since we only conducted the
crowdsourcing event in Munich, we cannot argue that this
difficulty extends to other urban or rural areas on the planet.
The effort and time required for mapping an area depends
on the complexity and density of the area and located grid
devices more than it does on the size of the area.

1. The appendix is included as supplemental material.
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Fig. 1: The number of accepted and rejected grid devices in
each area.

Fig. 2: OGM grid data separated based on their origin.

4.3 Evaluation of the Crowdsourced Grid Data

After the crowdsourcing event, our experts in the loop use
the OGM web application to verify the submitted devices.
The grid elements that are not classified correctly, such as
telecommunication cabinets that are incorrectly marked as
cable cabinets, are removed from the dataset. The results
show that, on average, 75% of the collected devices are
correctly identified by the participants and that Area 8 has
the best result with 96% accuracy because Group 8 strictly
adhered to the agenda and captured only devices with
detectable SWM signs. Figure 1 summarizes the number of
correctly verified devices, including the cable cabinets and
transformers combined, and the number of rejected devices
from all eleven areas.

After the verification, we use the OGM platform to
merge the grid data collected during the crowdsourcing
event with the existing OGM grid data. As mentioned in the
previous section, the OGM grid data consists of extracted
power-related OSM data combined with a few potential
submissions by other volunteers since the beginning of the
project. During merging, we removed the duplicate submis-
sions of the same grid devices that have identical type and
position. We carry out the rest of the evaluation by using
the merged grid data, which we refer to as OGM grid data.
The reasons for using the merged data are that one of the
contributions of the crowdsourcing approach is its function
as a supplement to the extracted OSM grid data and that it is
more crucial to evaluate the quality of aggregated publicly
available grid data. However, at the time of conducting the
crowdsourcing event, hardly any of the OGM transformers
or cable cabinets originated from OSM or any volunteers,
so the crowdsourcing event created a significant majority of
the grid elements shown in Figure 2.

To evaluate the accuracy and validity of the collected
grid data, we compare the OGM grid data from Freimann
subareas one to eleven with the official DSO grid data in

Fig. 3: The number of transformers and cable cabinets from
the OGM and DSO datasets.

Fig. 4: The number of cable cabinets from the OGM and DSO
datasets.

Fig. 5: The number of transformers from the OGM and DSO
datasets.

the corresponding subareas that we acquired from SWM.
First, we examine the DSO grid elements and discover that
for a few transformers, there are multiple identical entries
that are overlapping on the map. Therefore, we merge the
overlapping DSO transformers into one before evaluating
the OGM grid elements. Then, we compare the number of
OGM grid elements with the number of DSO grid elements
in each area without any constraints on the distance, mean-
ing that we do not enforce any maximum distance threshold
between the exact geographical position of the OGM grid
element and its corresponding DSO grid device. On average,
the OGM grid data contain 60% of the DSO grid elements,
and Area 4 reports the best accuracy of 82%, as shown by
Figure 3, which summarizes and compares the number of
extracted OGM and DSO transformers and cable cabinets.
Furthermore, in more detail, our comparison reports a 61%
coverage of DSO cable cabinets, with Area 4 offering the
best precision of 88%. The comparison of OGM transformers
to DSO transformers shows a 50% coverage, with Area 5
and 10 having 100% accuracy. Figure 4 and Figure 5 display
the comparison between OGM and DSO grid data in the
numbers of cable cabinets and transformers, respectively.

For the second phase of the evaluation, we define an
eight-meter maximum distance threshold between the OGM
grid element and the corresponding DSO element. As an
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Fig. 6: OGM and DSO grid devices in Freimann subarea 10.

Fig. 7: The number of transformers and cable cabinets from
the OGM and DSO datasets based on an eight-meter dis-
tance threshold.

Fig. 8: The number of cable cabinets from the OGM and DSO
datasets based on an eight-meter distance threshold.

example, Figure 6 displays the OGM and DSO grid elements
on the map, where we only count OGM elements as valid
if there exists an identical DSO element with the same type
within an eight-meter proximity of the OGM element. With
this constraint, we observe that on average, 33% of DSO
elements are covered by the OGM dataset, where Area 5 has
the highest coverage of 66%, as shown by Figure 7, which
compares the numbers of OGM and DSO transformers and
cable cabinets in each area. In more detail, the results report
a 35% coverage of DSO cable cabinets, with Area 4 showing
the highest coverage of 70%. The results also show a 26%
coverage of DSO transformers, where Area 10 reports the
best accuracy of 67%. Figure 8 and Figure 9 illustrate the
number of recognized cable cabinets and transformers.

Given the fact that we mapped a large area of Freimann
district in 90 minutes with the participation of 22 people
and collected 230 valid transformers and cable cabinets,
we argue that crowdsourcing is a practical approach for
fast and cost-efficient data collection. Although none of the
participants had expert knowledge, our experts in the loop
verified the correctness of 75% of the collected devices, and
the high precision (the number of true positives over the
number of true positives and false positives) and recall (the
number of true positives over the number of true positives

Fig. 9: The number of transformers from the OGM and DSO
datasets based on an eight-meter distance threshold.

TABLE 1: Precision and Recall of Area 5

Area 5 Precision Recall
Transformers + cable cabinets 82.61% 65.52%
Transformers 94.12% 66.67%
Cable cabinets 50% 60%

and false negatives) rates of Area 5 (the group with the
best result) [41], as Table 1 displays, confirm the practicality
of crowd intelligence. However, the participant’s training
and motivation are necessary for consistent performance.
Nevertheless, the limited precision of the location services
of the smartphones and the difficulty of detecting and
locating well-hidden grid devices are the primary sources
of inaccuracy, as shown by the varying accuracy of different
areas and groups.

5 INFERENCE OF THE DISTRIBUTION GRID

In the following section, we introduce our approach for
inferring distribution grid models based on the geographical
position of grid devices and consumers’ endpoints. Further-
more, we discuss the ground truth, which we derive from
the official DSO grid data that we received from SWM, and
we finally evaluate the accuracy of two inferred models
compared to the ground-truth model.

5.1 Distribution Network Inference based on Grid Data
We propose an approach for inferring distribution grid
models of an area based on the grid data of the area. In
other words, we infer a model of the low-voltage under-
ground power cables located within a specific area based
on the position of transformers, cable cabinets, and con-
sumer endpoints such as buildings and the structure of
pathways in the area. We base our inference method on
the primary assumption that the majority of underground
cables are installed along roads and pathways. Therefore,
we take advantage of the complete and freely available road
information of the area from OSM. Inference algorithm 1
denotes the method we develop for heuristically inferring
a minimum spanning tree (MST) as the distribution grid
model. We consider the provided position of grid devices
and consumers as target nodes taking into account the
structure of the roads. Each road consists of several nodes
representing a line, which we simplify to enforce the infer-
ence of MST along the roads. Therefore, we select the start
and endpoints of the roads and the intersection point of
each road pair. To avoid including duplicate points in our
dataset, we use a set ensuring the existence of only one copy
of any point.
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Fig. 10: Projection of the target node on the nearest roads
with an edge between them.

Afterward, we determine the projection of the target
nodes on the nearest road. As an example, Figure 10 dis-
plays target nodes in blue dots, their projection as green
nodes, and the edge between target and projection nodes
as red lines. We merge the projected nodes and filtered
road nodes to create a base graph containing edges between
every pair of nodes in the union of the two sets, where
we consider the distance between nodes in meters as the
weight of the edge. Then, we use the base graph to infer an
MST, and we finally add the edges between target nodes
and projected nodes to the inferred MST and return the
tree as the distribution grid model. We use projected nodes
instead of target nodes for creating the base graph because
otherwise, we could not create a clean MST along the roads.

Algorithm 1: Distribution Grid Inference Approach
1 InferDistributionGrid (TargetNodes,Roads)

input : TargetNodes, the set of transformers, cabinets and
buildings.

input : Roads, the line geometry of roads.
output: GridModel, A minimum spanning tree representing the

distribution grid.
2 filteredRoadNodes = set()
3 foreach roadi ∈ Roads do
4 foreach roadj ∈ Roads do

; // Roads start points
5 filteredRoadNodes.add(roadi[0], roadj [0])

; // Roads end points
6 filteredRoadNodes.add(roadi[−1], roadj [−1])
7 if roadsAreIntersecting(roadi, roadj) then
8 intersectionPoint =

findIntersectionPoint(roadi, roadj)
9 filteredRoadNodes.add(intersectionPoint)

10 projectedNodeSet =
projectTargetNodesOnRoad(TargetNodes,Roads)

11 mergedNodeSet = filteredRoadNodes ∪ projectedNodeSet
12 baseGraph = Graph()
13 baseGraph.addNodes(mergedNodeSet)
14 foreach nodei ∈ mergedNodeSet do
15 foreach nodej ∈ mergedNodeSet do
16 if edge(nodei, nodej) not in baseGraph AND i! = j

then
17 edgeWeight =

getDistanceInMeters(nodei, nodej)
18 baseGraph.addEdge(nodei, nodej , edgeWeight)

19 gridModel = generateMinimumSpanningTree(baseGraph)
20 projectedEdges =

makeEdgeProjectedTargetNode(TargetNodes)
21 gridModel = gridModel ∪ projectedEdges
22 return gridModel

The inference engine is implemented in Python with
the help of several packages, including but not limited to

NumPy [42], Shapely [43], and NetworkX [44], for creating
and manipulating complex networks. We store our grid
data on a PostgreSQL [45] database with the PostGIS [46]
extension enabled. To visualize and inspect the data on the
area’s map, which we import from OSM, we also use the
open-source geographical information system QGIS [47].
Furthermore, our source code is open sourced [48].

5.2 Ground-Truth Model of Freimann District

To evaluate the quality of the inference algorithm, first,
we generate the ground truth of the distribution model of
Freimann based on the official DSO grid data. We need
to construct compatible ground-truth models because the
acquired DSO grid information is in shapefile format (shape
format, shape index format, and attribute format) [49],
which is not compatible with our inferred grid models.
Furthermore, the DSO data require cleaning due to some
data inconsistencies, data duplication, and errors. After im-
porting the DSO grid data of the Freimann district into our
database, including the location of transformers, cable cab-
inets, consumer connections, and location of underground
cables, we perform a few steps of data cleaning.

For some transformers, cable cabinets, and consumer
nodes, there exist duplicate copies of nodes that are either
overlapping or located within a few meters of each other.
We merge these nodes by defining a maximum distance
of one to five meters between them. The reason for using
a varying range as a distance threshold is that we inspect
the data visually to find the best threshold based on the
type of the node. Afterward, we inspect the transformers,
cable cabinets, and consumer endpoints to detect the ones
that are disconnected from the grid due to the absence of
a connection to any neighboring cables. We connect these
isolated nodes by connecting the nodes to the closest cable
located within a node’s five-meter proximity, and if such a
cable does not exist, the node is removed from the dataset.
In the end, we review any remaining separated cable that is
not connected to any node or another cable at any endpoints
and remove the isolated cables from the dataset.

After cleaning and preprocessing, we use the cleaned
data to create a graph representing the distribution grid of
the area. However, we only use the cables from the DSO
dataset since all cables are presumably connected to either
endpoints or other cables. We build the base ground-truth
graph by iterating through each DSO cable line and re-
trieving the geographical representation of the line from the
database. Then, we convert the line’s data into a set of nodes
with an edge connecting the points that are in the row be-
hind each other. Afterward, we select the largest connected
subgraph as the model representing the distribution model
of the area. We follow this approach for creating the ground-
truth model because the cable line data are stored according
to EPSG:31468 Projection [50], which requires conversion
into the fundamental longitude and latitude that we use.
As an example, Figure 11 displays the ground-truth graph
of the Freimann subarea, in which the largest connected
subgraph is identified with green edges and the smaller
marked disconnected subgraphs are discarded. Figure 12
shows the created ground truth model of Freimann subareas
one to five, with a total cable length of 46484 meters.
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Fig. 11: Freimann subarea ground-truth subgraphs.

Fig. 12: Ground-truth model of the Freimann subarea.

5.3 Evaluation of the Inference Approach

To evaluate the accuracy of the inference algorithm, we
infer two separate models based on the DSO and OGM
transformers and cable cabinets data of Freimann and com-
pare the models with the generated ground-truth model.
Since our inference algorithm also requires the information
of roads and consumer endpoints of the area, we inte-
grate the grid data with the extracted related OSM data,
including the structure of the roads and the position of
residential and commercial buildings. The OGM grid data
that we use for generating models are the verified grid
devices, which we evaluated in Subsection 4.3. Figure 13
and Figure 14 illustrate the inferred models of the DSO
and OGM grid data, respectively. We generate the ground-
truth model and the DSO-inferred model, both of which are
based on the acquired DSO data of the area. However, the
difference is that the ground truth is created based on the
structure of previously known underground cables, whereas
the inferred DSO grid model generates the structure of the
underground cables based on the position of transformers
and cable cabinets.

The visual comparison of the models reveals high cov-
erage of the ground-truth model with the inferred models.
Figure 15 displays the two ground-truth and DSO-inferred
models overlapping on the map. Furthermore, we compare
the models based on the length of the models’ inferred
cables. Table 2 summarizes the calculated length of cable
for each inferred model, reporting the 88% coverage of the
ground-truth model by the DSO-inferred model and 75%
coverage by the crowdsourced OGM grid model. The results
indicate that the inference approach is capable of inferring
accurate grid models. However, the lower availability of
grid data in the OGM dataset than the DSO dataset indi-
cates that the quality of the model heavily depends on the

Fig. 13: The DSO-inferred model of the Freimann subarea.

Fig. 14: The OGM-inferred model of the Freimann subarea.

Fig. 15: Overlapping ground-truth and DSO inferred-
models. (Orange lines are ground truth, and the blue lines
are DSO.)

availability of distribution grid elements in the area.

6 SOLAR PANEL DETECTION FROM DRONE IM-
AGERY

To improve the quality of the inferred distribution models,
we need to improve the quality and availability of grid data
by integrating other resources, such as automatic detection
of grid devices from aerial imagery. In this section, we pro-
pose a novel approach for detecting solar panels installed in
urban areas from aerial images through an automated and
efficient approach. We divide the procedure for detecting
the solar panel into two separate phases. The first phase is
flight planning and capturing images of the areas of interest
with a drone. The second part involves preprocessing the
images and detecting the solar panels.

TABLE 2: Comparison of Ground-Truth Model with DSO
and OGM Inferred Models

Grid Model Cable Length (m) Coverage
DSO-Inferred Model 40840 87.86%
OGM-Inferred Model 34866 75.01%
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6.1 Data Collection Strategy and Image Acquisition
We selected an area in Garching, Germany, with high avail-
ability and density of solar panels. We used a Phantom
3 Professional quadcopter from DJI [34] with a 4K RGB
camera attached. We flew the camera 50 meters above the
ground for 40 minutes in total. We used the Pix4D Capture
app to execute the flight plans with a double-grid flight
pattern [51]. Although this pattern is more time consuming,
it provides maximum overlap and coverage, ensuring good
quality orthophotos. The acquired images are high-quality
RGB images.

6.2 Image Processing and Solar Panel Detection
The collected images are preprocessed using two different
parameter sets to remove noise and improve contrast, re-
sulting in two outputs for each input image. Then, the proce-
dure is followed by edge and contour detection of the solar
panels and the application of feature constraints to minimize
false positives. The results are combined, and redundancies
are removed using a nonmaximum suppression method to
provide a higher number of correctly detected solar panels.
In the following, we explain each step in more detail.

6.2.1 Preprocessing
We perform preprocessing to enhance the detectability of the
solar panels. Two parameter sets are used for preprocessing
the images: one for highlighting panels in different lighting
conditions and orientations and the other for providing two
outputs for each input at every step. Finally, the nonmaxi-
mum suppression method removes redundancies from the
combined results. We apply the following preprocessing
steps:

• Thresholding: For increasing the contrast of solar
panels against the background, the blue channel of
images is thresholded at 130 for the parameter set
one. No thresholding is done for the parameter set
two in this step.

• Grayscaling: This step converts each pixel to an
intensity value in the range of 0 to 1 for reducing the
amount of data used during image processing. The
grayscaled images are thresholded again at a value
of 140 for both parameter sets to further improve the
contrast.

• Gaussian Blurring: We apply this step to smooth the
grayscaled image and to remove the noise. For mak-
ing the boundaries of the solar panel more significant
and detectable, we apply two filter sizes of σ = 3 for
parameter set one and σ = 5 for parameter set two.

6.2.2 Edge Detection
After removing the noise from the images, we use the Canny
edge detection algorithm to detect the edges in the image
for identifying the boundaries of objects by selecting pixels
whose intensity values change suddenly.

6.2.3 Morphological Closing
Several detected edges are interrupted by small gaps be-
tween them, which hinder the detection of contours or
closed polygons in the next step. For this reason, we perform
a closing operation to close these small gaps.

Fig. 16: The result of contours detected (in red) using the
first parameter set.

Fig. 17: The result of contours detected (in blue) using the
second parameter set.

6.2.4 Contour Detection
Contours are derived from edges. To be able to define a
contour, the detected edges must be a set of closed curves
forming a closed polygon. For detecting solar panels, we
identify the quadrilateral since the distortions in aerial im-
ages cause rectangles to appear as quadrilaterals.

6.2.5 Constraints
To eliminate the false positives from a large number of de-
tected polygons during contouring, we apply the following
four constraints:

• We limit the number of vertices for each polygon to
four.

• Contours that have an approximate area outside the
range of typical solar panels are discarded.

• We set the valid range of the interior angles of the
polygons from 25 to 140 degrees.

• We define the valid range for the length of each of
the segments of the polygons to (34, 55).

Figure 16 and Figure 17 show the result of this step for
the parameter set one and two on an example figure.

6.2.6 Nonmaximum Suppression
In the last step, we combine the outputs of the two pa-
rameter sets and remove the redundancies by using the
nonmaximum suppression method [52]. We modified the
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Fig. 18: The result of nonmaximum suppression (in green)
combining the detected contours.

algorithm to enable us to detect the polygons and tilted
rectangles. This algorithm calculates the value of the local
maxima in the image. All of the pixels that do not fall within
the local maxima are set zero. Figure 18 shows the result of
this step on the sample image.

6.3 Evaluation of the Solar Panel Detection
For evaluation, a set of ten input images and their outputs
were taken into consideration, as Table 3 displays. For each
image, we manually counted the number of available solar
panels to quantify the efficiency of our detection. True
positives refer to the number of correctly detected solar
panels, false positives are the polygons falsely detected as
solar panels, and false negatives are the solar panels that
are not detected in the final output images. To quantify the
quality of our approach, we use precision and recall. A high
recall level is desirable, as it indicates a higher number of
correctly detected solar panels.

Figure 19 shows the results for the total numbers of solar
panels, true positives, false negatives, and false positives
for parameter sets one and two and for the final output
after combining the results and removing the redundancies
with the nonmaximum suppression method. We see that the
number of true positives increased significantly to 266 in
the final output compared to 211 and 224 for parameter sets
one and two, respectively. The number of false negatives
decreased in the final output to 118. This result is desirable
since we aim to correctly detect as many solar panels as
possible. The results show that the recall increased signifi-
cantly up to 0.69 in the final output compared to 0.57 and
0.60 for parameter sets one and two, respectively. This is
a desirable result, as the aim is to maximize the correctly
detected solar panels. The different parameters allow the
detection of solar panels in different lighting conditions
and orientations, which leads to an increase in recall. The
precision decreased slightly to 0.68 since the combination of
results led to a marginal increase in the number of outliers.
This outlier increase can be rectified at a later stage during
postprocessing.

7 DISCUSSION AND LIMITATIONS

The results of the campaign and inference approach demon-
strate that crowdsourcing is a practical, fast, and cost-
efficient approach for collecting grid data of an area that

TABLE 3: Calculation of Precision and Recall for a Sample
of Images

Image TP Found Polygons FP FN Precision Recall
1 71 80 14 1 0.835 0.986
2 14 28 14 3 0.5 0.823
3 14 28 14 17 0.5 0.451
4 84 86 9 5 0.903 0.943
5 6 13 14 11 0.3 0.352
6 6 25 19 9 0.24 0.4
7 36 48 12 33 0.75 0.521
8 7 9 2 10 0.777 0.411
9 14 28 14 3 0.5 0.823
Total 252 345 112 92 0.68 0.69

Fig. 19: Solar panel counts for the parameter set one, the pa-
rameter set two and for the final output after nonmaximum
suppression.

can be used for generating accurate distribution grid mod-
els. Although the inferred models can be used for simple
academic simulation studies, they lack sufficient accuracy to
be used by TSOs and DSOs for power infrastructure control
purposes. To improve the quality of inferred distribution
models, we need to improve the quality and the avail-
ability of crowdsourced grid data as well as the inference
approach. To improve the quality of grid data, we need to
increase the accuracy of collection devices, invest in training
of participants and integrate grid data and models from
various official resources. Although these approaches can
be beneficial, they introduce new financial and legislative
burdens. Furthermore, although we did not use solar panels
for the inference of the grid in this work , the discussed
panel detection approach can be adapted for use in detecting
transformers since we could benefit from the low flying
altitude of drones and the various techniques we employed
for identifying objects and angles.

To improve the accuracy of the inference approach, we
need to consider the exceptional inference cases. For exam-
ple, the discussed inference algorithm does not determine a
difference between the various types of roads and pathways
and assumes the existence of underground cables along any
paths, such as pedestrian ways and dirt roads, but in reality,
the cables are often not installed along dirt roads. Fur-
thermore, MSTs are a suboptimal solution when inferring
distribution grid models because DSOs often implement
loops in the distribution systems for increasing the resilience
and reliability of the power grid. Therefore, we suggest
investigating more complex network theory approaches or
power flow-based network design approaches.

Furthermore, we should mention that although several
OSM power-related elements contain useful information
such as voltage level, several other essential grid charac-
teristics, such as the line’s thermal parameters, are missing,
as acquiring such information requires expert knowledge of
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the local distribution grid. We limit ourselves in this work
to inferring the topological model of the distribution grids.

Although we limited this work to infer distribution grid
models of specific regions in Munich, the explained ap-
proach for collecting grid data and generating models is not
limited to any geographical region. However, researchers
may encounter a few challenges when applying our ap-
proach to other regions, especially areas outside Germany.
One of the challenges is the different appearance of grid
elements in various countries. For example, various regions
may have different regulations for marking transformers
or cable cabinets. Therefore, the contributors should first
be instructed on the local characteristics of grid devices.
Furthermore, researchers must also pay attention to the
assumptions we considered for inferring models, such as
whether the placement of underground cables along roads
holds for the corresponding region.

8 CONCLUSIONS

In this work, we introduced a crowdsourcing framework
developed with the help of the OGM platform, which we
used for conducting a crowdsourcing campaign. We also
proposed an inference approach for generating distribution
grid models based on the position of grid devices, consumer
endpoints, and roads. We also introduced an approach for
detecting solar panels from drone imagery. The results of
the crowdsourcing event achieve a precision of up to 82%
and a recall of up to 65% depending on the performance of
the participants. Furthermore, the evaluation of the inferred
distribution grid model based on the official complete DSO
grid dataset shows a power length accuracy of 88% com-
pared to the ground truth. Additionally, the evaluation of
our field experiments for solar panel detection revealed 68%
precision and 69% recall. Our results confirm crowdsourcing
as an efficient and beneficial data collection approach for
distribution grid device mapping, which, in combination
with an inference algorithm, can provide a practical method
to obtain realistic distribution grid models.

As future work, we will work on improving the quality
of the data collection methods and the inference approach
by integrating additional data sources and methods, such
as automatic detection of distribution grid elements and
automatic improvement and classification of grid data by
utilizing deep learning approaches. Furthermore, we in-
tend to investigate the applicability of our crowdsourcing
approach and inference algorithm to the North American
distribution grid, where the grid elements are more spread
out over larger geographical areas and the grid models are
also less accurate than the German grid. To improve the
precision of the inference algorithm on the crowdsourced
data, we plan to consider the use of more complex graph
structures, genetic algorithm-based methods, and spatial
clustering approaches of smart meter data. Finally, we focus
on adapting the techniques used for detecting solar panels
to identify transformers, and we improve the accuracy of
the solar panel detection mechanism by improving the
constraint definitions to remove the false positives.
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J. Isele, H. B. Keller, P. Kohlhepp, U. Kühnapfel, U. Stucky,
S. Waczowicz, and R. Mikut, “Information and communication
technology in energy lab 2.0: Smart energies system simulation
and control center with an open-street-map-based power flow
simulation example,” Energy Technology, vol. 4, no. 1, pp. 145–162,
2016.

[21] J. Rivera, P. Nasirifard, J. Leimhofer, and H. Jacobsen, “Automatic
generation of real power transmission grid models from crowd-
sourced data,” IEEE Transactions on Smart Grid, 2018.

[22] S. von Roon, M. Sutter, F. Samweber, and K. Wachinger,
“Netzausbau in deutschlan,” 2014, accessed: 2018-01-03. [Online].
Available: http://www.kas.de/wf/doc/kas 38837-544-1-30.pdf

https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://taginfo.openstreetmap.org/keys/power
https://taginfo.openstreetmap.org/keys/power
http://www.kas.de/wf/doc/kas_38837-544-1-30.pdf


12

[23] N. Honeth, A. Saleem, K. Zhu, L. Vanfretti, and L. Nordström,
“Decentralized topology inference of electrical distribution net-
works,” in 2012 IEEE PES Innovative Smart Grid Technologies (ISGT),
2012, pp. 1–8.

[24] S. Bolognani, N. Bof, D. Michelotti, R. Muraro, and L. Schenato,
“Identification of power distribution network topology via voltage
correlation analysis,” in 52nd IEEE Conference on Decision and
Control, 2013, pp. 1659–1664.

[25] V. Kumar, R. Krishan, and Y. R. Sood, “Optimization of radial
distribution networks using path search algorithm,” International
Journal of Electronics and Electrical Engineering, vol. 1, no. 3, pp.
182–187, 2013.

[26] C. G. Taroco, E. G. Carrano, R. H. C. Takahashi, and O. M. Neto,
“A faster genetic algorithm for substation location and network
design of power distribution systems,” in 2012 IEEE Congress on
Evolutionary Computation, 2012.

[27] J. M. Malof, K. Bradbury, L. M. Collins, and R. G. Newell, “Au-
tomatic detection of solar photovoltaic arrays in high resolution
aerial imagery,” Applied, vol. 183, pp. 229 – 240, 2016.

[28] J. M. Malof, K. Bradbury, L. M. Collins, R. G. Newell, A. Serrano,
H. Wu, and S. Keene, “Image features for pixel-wise detection
of solar photovoltaic arrays in aerial imagery using a random
forest classifier,” in 2016 IEEE International Conference on Renewable
Energy Research and Applications (ICRERA), 2016, pp. 799–803.

[29] J. M. Malof, L. M. Collins, and K. Bradbury, “A deep convolutional
neural network, with pre-training, for solar photovoltaic array
detection in aerial imagery,” in 2017 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2017, pp. 874–877.

[30] B. So, C. Nezin, V. Kaimal, S. Keene, L. Collins, K. Bradbury, and
J. M. Malof, “Estimating the electricity generation capacity of solar
photovoltaic arrays using only color aerial imagery,” in 2017 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
2017, pp. 1603–1606.

[31] R. K. Fedorov, “Logical methods of object recognition on satellite
images using spatial constraints,” arXiv preprint arXiv:1004.4793,
2010.

[32] A. Devarajan, S. Manor, J. Perkins, R. Saboo, W. Zhang,
K. Bradbury, L. Collins, T. Johnson, J. Malof, and R. Newell,
“Solar power estimation through remote sensing,” 2018, accessed:
2018-12-05. [Online]. Available: https://bigdata.duke.edu/sites/
bigdata.duke.edu/files/images/SolarPoster sm.pdf

[33] DigitalGlobe, “Satellite information,” 2018, accessed: 2018-12-05.
[Online]. Available: https://www.digitalglobe.com/resources/
satellite-information

[34] DJI, “Phantom 3 4k specs,” 2018, accessed: 2018-12-05. [Online].
Available: https://www.dji.com/phantom3-4k/info

[35] NanoLumens, “Pixel pitch,” 2017, accessed: 2018-12-
05. [Online]. Available: https://www.nanolumens.com/blog/
what-is-pixel-pitch-and-why-should-i-care/

[36] OpenGridMap, “Opengridmap homepage,” 2018, accessed: 2018-
01-03. [Online]. Available: http://opengridmap.com/

[37] ——, “Opengridmap android application,” 2018, accessed: 2018-
01-03. [Online]. Available: https://play.google.com/store/apps/
details?id=tanuj.opengridmap

[38] T. W. Malone, R. Laubacher, and C. Dellarocas, “Harnessing
crowds: Mapping the genome of collective intelligence,” 2009.

[39] C. of Munich, “Munich freimann district,” 2018, accessed: 2018-
01-05. [Online]. Available: http://www.muenchen.de/stadtteile/
freimann.html

[40] S. München, “Munich city utilities,” 2018, accessed: 2018-01-05.
[Online]. Available: https://www.swm.de/

[41] K. M. Ting, Precision and Recall. Springer US, 2010, pp. 781–781.
[42] NumPy, “Numpy package,” 2018, accessed: 2018-01-03. [Online].

Available: http://www.numpy.org/
[43] Shapely, “Shapely package,” 2018, accessed: 2018-01-03. [Online].

Available: https://pypi.python.org/pypi/Shapely
[44] NetworkX, “Networkx package,” 2018, accessed: 2018-01-03.

[Online]. Available: https://networkx.github.io/
[45] P. G. D. Group, “Postgresql,” 2018, accessed: 2018-01-10. [Online].

Available: https://www.postgresql.org/
[46] PostGIS, “Spatial and geographic objects for postgresql,” 2018,

accessed: 2018-01-05. [Online]. Available: https://postgis.net/
[47] Q. D. Team, “Qgis,” 2018, accessed: 2018-01-04. [Online].

Available: https://www.qgis.org/en/site/
[48] OpenGridMap, “Opengridmap distribution inference engine,”

2018, accessed: 2018-01-03. [Online]. Available: https://github.
com/OpenGridMap/power-grid-detection

[49] E. ESRI, “Shapefile technical description,” An ESRI White Paper,
1998.

[50] S. Reference, “Epsg:31468 projection,” 2018, accessed: 2018-01-11.
[Online]. Available: http://spatialreference.org/ref/epsg/31468/

[51] Pix4D, “Pix4dcapture,” 2018, accessed: 2018-12-05. [Online].
Available: https://pix4d.com/product/pix4dcapture/

[52] A. Rosebrock, “Non-maximum suppression for object
detection in python,” 2014, accessed: 2018-12-05. [On-
line]. Available: https://www.pyimagesearch.com/2014/11/17/
non-maximum-suppression-object-detection-python/

Hans-Arno Jacobsen’s pioneering research
lies at the interface between computer science,
computer engineering, and information systems.
After studying and completing his doctorate in
Germany, France, and the USA, Prof. Jacobsen
engaged in postdoctoral research at the INRIA
near Paris before moving to the University of
Toronto in 2001, as a professor in the Depart-
ment of Electrical and Computer Engineering
and the Department of Computer Science. After
being awarded the prestigious Alexander von

Humboldt Award, he started to engage in research activities at the
Technical University of Munich.

Pezhman Nasirifard received his B.Sc. in Com-
puter Software Engineering from the University
of Tehran, Iran, in 2013 and his M.Sc. in Com-
puter Science from the Technical University of
Munich in 2017. He joined the Chair of Appli-
cation and Middleware Systems at the Technical
University of Munich in August 2017 as a Ph.D.
candidate.

Jose Rivera received a Dipl.-Ing. degree in
Electrical Engineering and Information Technol-
ogy and a Ph.D. degree in Natural Sciences
from the Technical University of Munich, Ger-
many, in 2012 and 2017, respectively. Until his
graduation, he interned at Siemens Corporate
Technologies. He was also a visiting student at
the Massachusetts Institute of Technology (MIT)
in the Laboratory for Information and Decision
Systems (LIDS).

Prerona Ray Baruah received a B.Tech. De-
gree in Computer Science and Engineering from
Indraprastha University, India, in 2014 and an
M.Sc. degree in Computer Science from the
Technical University of Munich, Germany, in
2017. Her interests include image processing,
database systems, and computer networks. She
is currently working as a software developer at
the SAP Headquarters, Germany.

https://bigdata.duke.edu/sites/bigdata.duke.edu/files/images/SolarPoster_sm.pdf
https://bigdata.duke.edu/sites/bigdata.duke.edu/files/images/SolarPoster_sm.pdf
https://www.digitalglobe.com/resources/satellite-information
https://www.digitalglobe.com/resources/satellite-information
https://www.dji.com/phantom3-4k/info
https://www.nanolumens.com/blog/what-is-pixel-pitch-and-why-should-i-care/
https://www.nanolumens.com/blog/what-is-pixel-pitch-and-why-should-i-care/
http://opengridmap.com/
https://play.google.com/store/apps/details?id=tanuj.opengridmap
https://play.google.com/store/apps/details?id=tanuj.opengridmap
http://www.muenchen.de/stadtteile/freimann.html
http://www.muenchen.de/stadtteile/freimann.html
https://www.swm.de/
http://www.numpy.org/
https://pypi.python.org/pypi/Shapely
https://networkx.github.io/
https://www.postgresql.org/
https://postgis.net/
https://www.qgis.org/en/site/
https://github.com/OpenGridMap/power-grid-detection
https://github.com/OpenGridMap/power-grid-detection
http://spatialreference.org/ref/epsg/31468/
https://pix4d.com/product/pix4dcapture/
https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/
https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/

	Introduction
	Related Work
	OpenGridMap Crowdsourcing Platform
	Crowdsourcing Distribution Grid Data
	Crowdsourcing Framework
	Crowdsourcing Campaign in Munich Freimann
	Evaluation of the Crowdsourced Grid Data

	Inference of the Distribution Grid
	Distribution Network Inference based on Grid Data
	Ground-Truth Model of Freimann District
	Evaluation of the Inference Approach

	Solar Panel Detection from Drone Imagery
	Data Collection Strategy and Image Acquisition
	Image Processing and Solar Panel Detection
	Preprocessing
	Edge Detection
	Morphological Closing
	Contour Detection
	Constraints
	Nonmaximum Suppression

	Evaluation of the Solar Panel Detection

	Discussion and Limitations
	Conclusions
	References
	Biographies
	Hans-Arno Jacobsen's
	Pezhman Nasirifard
	Jose Rivera
	Prerona Ray Baruah


