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ABSTRACT
Maintaining a complete and up-to-date model of the distribution
grid is a challenging task, and the scarcity of open models repre-
sents a significant bottleneck for researchers in this area. In this
work, we address these challenges by introducing a crowdsourc-
ing framework for the collection of open data on distribution grid
devices and an algorithm to infer the topological model of the distri-
bution grids. We use the crowd and smartphones to collect an image
and the geographical position of power distribution grid devices.
Since power distribution lines are usually underground and cannot
be mapped, we use spatial data analytics on the collected data in
combination with other open data sources to infer the topology
of the distribution grid. This paper describes and evaluates our
crowdsourcing and inference approach. To evaluate our approach,
we organized and conducted a crowdsourcing campaign to map and
infer a sizeable district in Munich, Germany. The results are com-
pared with the ground truth of the distribution system operator. Our
field experiments show that using the crowd to recognize power
distribution elements, a precision of up to 82% and a recall of up
to 65% can be obtained. The numerical evaluation of our inference
algorithm demonstrates that the model we inferred based on the
acquired official DSO grid dataset achieves a power length accuracy
of 88% compared to the ground truth. These results confirm our
approach as a practical method to infer real power distribution grid
models.
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• Hardware → Energy distribution; • Information systems
→ Crowdsourcing;
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1 INTRODUCTION
Over the past few years, the majority of the international commu-
nity has grown increasingly committed to the reduction of green-
house gases, especially CO2 emissions [5]. Since the electric power
industry is responsible for producing a significant portion of the
CO2 emissions [2], researchers and practitioners have proposed
several approaches to address these issues by facilitating further
integration of renewable resources and introducing new electrical
devices such as electric vehicles, and local storage units [29]. How-
ever, before implementing the proposed solutions, the practicality
and stability of the approaches should be comprehensively eval-
uated based on the actual distribution grid models. Nevertheless,
the majority of studies are based on standardized test feeders, such
as the IEEE test feeders [12], the PNNL feeders [14] and CIGRE
test feeders [33], which are considerably simplified models and fail
to reflect the complexity, geographic features, and limitations of
real individual power grids. Although some distribution system
operators (DSOs) maintain digitilized models of their grids, the op-
erators do not publicly publish the grid models due to security and
legal reasons. Additionally, in several cases, the grid data, especially
for distributions grids, is either incomplete or outdated. Also, peri-
odically collecting and updating the grid data is time-consuming,
intrusive and a significant financial burden for operators [6].

In this paper, we introduce a non-intrusive crowdsourcing frame-
work for collecting and inferring distribution grid models. The
crowdsourcing approach considerably reduces the cost, effort, and
time required for gathering grid data by distributing the data collec-
tion tasks among the crowd. Furthermore, to improve the quality
of the collected grid data, we merge the crowdsourced grid data
with the extracted distribution grid elements from free and publicly
available OpenStreetMap (OSM) data [24]. Finally, we propose an
approach for inferring a distribution grid topological model for
a particular region based on the position of grid devices and the
spatial features of the area.

To capture, analyze and model the medium and low voltage grid
models the power industry has been utilizing geographic informa-
tion systems (GIS) for a long time. However, no utility manages to
maintain an exhaustive and most up-to-date model of their grids
[16]. The novelty of our work lies in implementing a complete
crowdsource framework for gradually and consistently collecting
valid and verified grid data which we use for inferring accurate
grid models. In this work, we also explain how to conduct a crowd-
sourcing campaign based on our framework. We use the result of
the crowdsourcing campaign to evaluate the performance of the
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participants and confirm the practicality of crowdsourced grid data
in comparison to official grid data provided by the distribution grid
operator.

We recognize the following contributions in this paper:
(1) We introduce a crowdsourcing framework for collecting,

verifying, storing and publishing power grid elements.
(2) We design and conduct a crowdsourcing campaign with sev-

eral participants, where the evaluation of the acquired data
verifies crowdsourcing as a practical approach to collecting
and maintaining the grid data.

(3) We propose an inference approach for generating distribu-
tion grid models of an area based on the geographical posi-
tion of power grid elements, consumer endpoints, and the
pathway’s structure of the area.

We structure the rest of the paper as follows: In Section 2, we
review the previous works on crowdsourcing and inference ap-
proaches of the distribution grids which we build on. In Section
3, we introduce the platform we built for executing the crowd-
sourcing event. Then, we discuss our crowdsourcing framework
and describe the insights and results derived from the conducted
crowdsourcing campaign in Section 4, where we also explain the
surveyed feedback of the participants and evaluate the quality of
the crowdsourced grid data. In Section 5, we describe and evaluate
the inference approach for generating distribution grid models fol-
lowed by Section 6, where we discuss the results and limitations
of our work. In Section 7, we provide the concluding remarks and
describe the future works.

2 RELATEDWORK
Crowdsourcing is a time-efficient and cost-effective method for
collecting detailed and highly accurate geographical data, includ-
ing electrical grid elements [9, 26]. However, there has not been
a coherent crowdsourcing approach for collecting electrical grid
devices. A potential resource of crowdsourced power-related data is
OSM, which uses a community approach to locate and map physical
structures of an area. As of January 2018, OSM contains about 16
million components marked with power-related tags all around
the globe [25]. However, the majority of the power-related OSM
data are transmission level elements. Medium and low voltage grid
devices are scarce in OSM. Furthermore, the OSM community often
tags the power-related components with wrong values due to the
lack of expert knowledge, or just errors, e.g., some transformers are
marked as cable cabinets. An approach for crowdsourcing grid data
and integrating the collected data with OSM data is present in [30].
We extend the previous works by improving the crowdsourcing
approach through designing a robust crowdsourcing framework as
a supplement to OSM grid data to take advantage of all available
datasets and also to record grid elements for inferring distribution
models. Moreover, we provide an evaluation of the approach against
a ground truth, which was missing in the literature.

The studies on inferring topological models of distribution grids
are somewhat limited. Although several studies propose approaches
for inferring topological models of transmission grids based on
complex network theories [1, 4, 10, 31], these approaches are not
applicable to distribution grids. The main reasons are that the dis-
tribution grid components and structures are inherently different,

the number of devices in distribution grids is more extensive than
transmission grids, and the structures tend to be more complicated
than in transmission grids. These challenges make distribution net-
works much more difficult to map and to build accurate models.
Furthermore, in contrast to transmission grid elements, in many
countries a significant portion of distribution level grid elements
are underground, e.g., in Germany, 73 percent of the medium volt-
age and 87 percent of low voltage cables are buried [37]. As a result,
locating the accurate geographical position of grid components
and their characteristics can be very challenging and require sev-
eral assumptions and background knowledge. Nevertheless, some
studies propose intrusive methods for inferring distribution grid
topologies based on the interaction among grid devices. In [11],
the authors propose an approach for decentralized inference of
distribution grids based on the communication among a set of au-
tonomous intelligent agents, on an overlay network. In [3], they
estimate the grid topology by applying correlation analysis on the
voltage amplitude measurements of grid endpoints. However, none
of these approaches consider geographical characteristics, and they
require detailed information of grid and interaction with grid el-
ements, which we can not apply to crowdsourced grid data. One
similar area to our inference challenge is planning optimal and cost-
efficient distribution grid systems based on the location of expected
consumers, where applying genetic algorithm and graph theory are
accepted methods [13, 34]. Therefore, in this work, we use spatial
analysis and graph theory for inferring distribution models when
the location of the grid devices, consumers, and structure of the
region is known. We differentiate ourselves from previous works in
the combination of crowdsourcing and inference approaches to in-
fer real power distribution grids. Also, our method is non-intrusive,
i.e., we only require device locations and no grid measurements.
Finally, in contrast to other works, we conduct field experiments
and compare our results to the ground truth of the distribution grid
operator.

3 OPENGRIDMAP CROWDSOURCING
PLATFORM

Our crowdsourcing campaign heavily makes use of the Open-
GridMap (OGM) project [23]. The OGM project offers a platform
for collecting, organizing, and openly publishing a broad range of
transmission and distribution grid data and models. Also, OGM
provides the researchers and practitioners with a crowdsourcing
platform for collecting high, medium and low voltage level grid de-
vices. The OGM extracts and combines the power-related grid data
of OSM with the verified submissions of volunteers. As an example,
electrical utility crews can use the OGM platform to record the
continuously changing electrical grid to maintain the most recent
information of the grid.

The OGM crowdsourcing platform consists of two primary com-
ponents, including a smartphone application and a web applica-
tion. Figure 1 displays the OGM Android application available free
of charge on the Google PlayStore [21]. The participants of the
crowdsourcing activity are required to download and install this
application on their phone. Afterward, the participants follow a
simple procedure for submitting the grid element upon identifying
the element in their surroundings. First, the participants should
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Figure 1: OpenGridMap Android application.

Figure 2: OpenGridMap web application.

select the type of the discovered grid device. Then, the participants
take a picture of the grid device with the application and review
the location of the device on the map obtained from the location
service of the smartphone. Since the location service may not be
accurate, the participants can edit the location of the grid device
manually. Finally, participants submit the recorded grid element to
the OGM servers either immediately or when the smartphone has
access to a WiFi connection.

On the OGM web application, the expert in the loop reviews
and accepts the submitted grid elements. The expert has the option
of examining the grid element, correcting the assigned metadata
such as the type of device and merge the device with existing
devices to avoid duplicate entries. For example, Figure 2 illustrates
a submission of a transformer. After the review, the expert accepts
and publishes the grid element to the OGM platform.

4 CROWDSOURCING DISTRIBUTION GRID
DATA

In the following section, we describe the designed and developed
crowdsourcing framework for collecting distribution grid devices.
We also performed a crowdsourcing campaign in the Freimann dis-
trict of Munich, Germany. A comparison to the ground truth reveals
that crowdsourcing is a practical method for mapping distribution
grid devices.

4.1 Crowdsourcing Framework
Crowdsourcing makes an appealing option for collecting distri-
bution grid data because the grid devices are widely distributed,

and their positions are previously unknown [15]. Nevertheless, we
require a consistent framework to clarify and divide up the data
collection activity into smaller precise and realizable tasks which
several participants can accomplish independently and in parallel.
We base our crowdsourcing framework on the collective intelli-
gence framework developed by Malone et al. at the MIT’s Center
for Collective Intelligence [15]. The Malone’s framework consists
of four elements, also known as "genes," which are required for
recognizing the building blocks of collective intelligence. The four
elements are described as four fundamental questions of "Who,
Why, What and How," which we utilize to structure our crowd-
sourcing method.

The detailed description of the Malone’s framework is out of
the scope of this paper. According to the Malone’s framework, we
identify the following requirements and attributes of an organized
crowdsourcing campaign for collecting distribution grid devices:

• We require the crowdsourcing movement to be relevant
anywhere on the planet, independent of the geographical
location and participants’ previous knowledge and training.
Therefore, as a medium for collecting the grid data, we utilize
a custom designed smartphone application with a simplified
data collection procedure. Due to the high prevalence of
smartphones, the application can be used by any participants
without any previous training required.

• Since any practical crowdsourcing activity profoundly de-
pends on the number of participants, providing an appropri-
ate incentive for the participants is crucial. Therefore, we
present the participants with a detailed description of the
project and its objectives, emphasizing the project’s potential
for reducing the greenhouse gases and integration of renew-
able energy resources, presumably increasing the intrinsic
joy of the participants for engaging in such a community.

• The distribution grid devices have a wide range of designs
and types. However, we require collecting only specific de-
vices such as transformers and cable cabinets. Therefore, we
provide the participants with a protocol, explicitly defining
the type of necessary grid elements and also the tasks which
they need to fulfill. Because we presume the participants do
not have any previous training and they may catch wrong
grid devices, we verify the validity of the collected grid ele-
ments after the crowdsourcing campaign with the help of
an expert in the loop.

• To break down the crowdsourcing activity into recogniz-
able smaller tasks, we divide the data collection region into
smaller subareas which we assign each subarea to a group
of participants. However, to prevent any potential duplicate
recordings, the expert in the loop monitors the elements
based on their position and removes the duplicated entries.

Accordingly, any crowdsourcing event that we manage follows a
precise procedure. First, before beginning the crowdsourcing event,
we hold a preliminary meeting with all participants to describe
the objectives of the event and build a group of two persons. Each
group receives a package, containing the group protocol, a stamped
letter describing the intentions of the crowdsourcing campaign that
they present to the police or other security personals in case of
any inquiry. We also provide an agenda that use visual examples to
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explain the conventional design, signs, and characteristics of the
wanted grid devices specific to the area.

In each group, one person has the role of navigator and the other
data collector. The group navigator has the responsibility of filling
the group’s protocol and navigating the group through the area
during the crowdsourcing event. The collector follows the navigator
and carefully monitors the area for the requested power devices,
and upon identifying a new grid device, the collector snapshots and
submits the element by using the OGM smartphone application.
The group protocol, completed by the navigator, contains a printed
map of the area assigned to the group. The navigator marks the
streets and paths which are covered by the group. Furthermore,
in case of failing to inspect some parts of the area, due to time
limitation or lack of accessibility, the navigator marks the missing
parts on the protocol’s map and documents the reason. To prevent
losing any collected grid data due to any unexpected OGM platform
failures, the navigator keeps a list of discovered transformers on the
protocol’s map. Also, the navigator keeps a record of the number
of identified transformers and cable cabinets in the protocol.

To increase the safety of the participants, we introduce a few
obligatory rules which all participants are required to follow. We
prohibit participants from trespassing any military, industrial or pri-
vate properties. Only power devices which are observable from the
streets and public areas should be recorded. Furthermore, we pro-
vide the participants with phone numbers of the event’s organizers,
which they can reach in case of emergency.

4.2 Crowdsourcing Campaign in Munich
Freimann

To measure the quality of our framework, we organized and con-
ducted a crowdsourcing campaign in the German city of Munich’s
Freimann district at 9th of May 2017 [20]. We selected the Freimann
district because we received the official distribution grid data from
Stadtwerke München (SWM) [17], the Munich city utilities and DSO,
which we use as the base for our evaluation.

Initially, we divided up the Freimann district into several subar-
eas with approximately equal areas as Figure 3 displays. However,
since we recruited only 22 participants for the crowdsourcing event,
we covered eleven areas with two persons assigned to each area,
and we gave each group 90 minutes to perform the mapping in
the designated area. Although we did not record the exact distance
each group traversed, we intended to cover 4 kilometers of routes
on average by each group. Furthermore, since participants installed
the application on their phones, their participation did not enforce
any initial cost on us. Although the OGM crowdsourcing platform
is capable of storing any distribution grid devices, for the sake of
simplicity, we asked the participants to collect only transformers
and cable cabinets in their area. In the agenda, we provided de-
tailed information about the transformers and cables cabinets used
by SWM, the Munich’s DSO. We should mention that after the
end of crowdsourcing event, we offered an incentive to the best
performing group.

After the event, we used a questionnaire to survey the over-
all crowdsourcing experience of all participants. We include the
complete result of the survey in the appendix and briefly explain
the most interesting responses. In general, the results are in the

Figure 3: Freimann district data collection areas.

affirmative upper third in all indicators, confirming that the par-
ticipants are satisfied with the organization and execution of the
OGM crowdsourcing platform and our framework. Furthermore,
for the significant majority of the participants, the community
spirit is a more valuable incentive than monetary prizes, when
deciding to join the event, indicating that our community-spirit-
oriented incentives were attractive to the participants. Although
75% of the participants expressed willingness to participate in such
a crowdsourcing event again, we must remark that recruiting a
large number of participants is challenging. We recruited 70% per-
cent of the participants from the course instructed by one of the
event organizers, and the rest of the participants were informed
by their friends, and no participant discovered the event from the
public Facebook event we had created two months before the event.
Therefore, we suggest investing enough time and publicity for gath-
ering the participants before any crowdsourcing event. Finally, the
survey reveals that identifying distribution grid devices is a chal-
lenging task because the grid devices are well-hidden. However,
since we only conducted the crowdsourcing event in Munich, we
can not argue that this difficulty extends to other urban or rural
areas on the planet. Nevertheless, the effort and time required for
mapping an area depends on the complexity and density of the area
and located grid devices more than the size of the area.

4.3 Evaluation of the Crowdsourced Grid Data
After the crowdsourcing event, our experts in the loop use the OGM
web application to verify the submitted devices. The grid elements
which are not classified correctly, such as telecommunication cab-
inets that are incorrectly marked as cable cabinets, are removed
from the dataset. The results show that on average 75% of the col-
lected devices are correctly identified by the participants, and Area
8 has the best result with 96% accuracy because Group 8 strictly
adhered to the agenda and captured only devices with detectable
SWM signs. Figure 4 summarizes the number of correctly verified
devices, including the cable cabinets and transformers combined,
and also the number of rejected devices from all eleven areas.

After the verification, we use the OGM platform to merge the
grid data collected during the crowdsourcing event with the exist-
ing OGM grid data. As mentioned in the previous section, the OGM
grid data consists of extracted power-related OSM data combined
with a few potential submissions by other volunteers since the be-
ginning of the project. During merging, we removed the duplicate
submissions of the same grid devices that have identical type and
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Figure 4: The number of accepted and rejected grid devices
in each area.

Figure 5: OGM grid data separated based on their origin.

position. We carry on the rest of the evaluation by using the merged
grid data which we refer to as OGM grid data. The reason for using
the merged data is that one of the contributions of the crowdsourc-
ing approach is in being a supplement to the extracted OSM grid
data and it is more crucial to evaluate the quality of aggregated
publicly available grid data. However, at the time of conducting
the crowdsourcing event, hardly any of the OGM transformers
or cable cabinets originate from OSM or any volunteers, and the
crowdsourcing event creates the significant majority of the grid
elements shown in Figure 5.

To evaluate the accuracy and validity of the collected grid data,
we compare the OGM grid data from Freimann subareas one to
eleven with the official DSO grid data in the corresponding subar-
eas, that we acquired from SWM. First, we examine the DSO grid
elements and discover that for a few transformers there are multiple
identical entries which are overlapping on the map. Therefore, we
merge the overlapping DSO transformers into one before evaluat-
ing the OGM grid elements. Then, we compare the number of OGM
grid elements with the number of DSO grid elements in each area
without any constraints on the distance, meaning that we do not
enforce any maximum distance threshold between the exact geo-
graphical position of the OGM grid element with its corresponding
DSO grid device. On average, the OGM grid data contains 60% of
DSO grid elements, and Area 4 reports the best accuracy of 82%, as
Figure 6 summarizes and compares the number of extracted OGM

Figure 6: The number of transformers and cable cabinets
from OGM and DSO datasets.

Figure 7: The number of cable cabinets from OGM and DSO
datasets.

Figure 8: The number of transformers from OGM and DSO
datasets.

and DSO transformers and cable cabinets. Furthermore, in more
detail, our comparison reports a 61% coverage of DSO cable cabinets
with Area 4 offering the best precision of 88%. The comparison of
OGM transformers to DSO transformers show a 50% coverage, with
Area 5 and 10 having 100% accuracy. Figure 7 and Figure 8 displays
the comparison between OGM and DSO grid data in the number of
cable cabinets and transformers, respectively.

For the second phase of evaluation, we define an eight meters
maximum distance threshold between the OGM grid element and
corresponding DSO element. As an example, Figure 9 displays the
OGM and DSO grid elements on the map, where we only count
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Figure 9: OGMandDSOgrid devices in the Freimann subarea
10.

Figure 10: The number of transformers and cable cabinets
from OGM and DSO datasets based on an eight meters dis-
tance threshold.

OGM elements as valid, if there exists an identical DSO element
with the same type, within an eight meters proximity of the OGM
element. With this constraint, we observe that on average 33% of
DSO elements are covered by theOGMdataset, where Area 5 has the
highest coverage of 66%, as Figure 10 compares the number of OGM
and DSO transformers and cables cabinets in each area. In more
detail, the results report a 35% coverage of DSO cable cabinets with
Area 4 showing the highest 70% coverage. The results also show a
26% coverage of DSO transformers, where Area 10 reports the best
accuracy of 67%. Figure 11 and Figure 12 illustrate the number of
recognized cable cabinets and transformers, respectively.

Given the fact that we mapped a large area of Freimann district
in 90 minutes and with the participation of 22 people and collected
230 valid transformers and cable cabinets, we argue that crowd-
sourcing is an effective approach for fast and cost-efficient data
collection. Although none of the participants had expert knowledge,
our experts in the loop verified the correctness of 75% of the col-
lected devices and the high precision (the number of true positives
over the number of true positives and false positives) and recall
(the number of true positives over the number of true positives and
false negatives) rate of Area 5 (the group with the best result) [36],
as Table 1 displays, confirm the practicality of crowd intelligence.
However, the participants training and motivation is necessary for
consistent performance. Nevertheless, the limited precision of the

Figure 11: The number of cable cabinets fromOGM and DSO
datasets based on an eight meters distance threshold.

Figure 12: The number of transformers from OGM and DSO
datasets based on an eight meters distance threshold.

Table 1: Precision and Recall of Area 5

Area 5 Precision Recall
Transformers + cable cabinets 82.61% 65.52%
Transformers 94.12% 66.67%
Cable cabinets 50% 60%

location services of the smartphones and the difficulty of detecting
and locating well-hidden grid devices are the primary source of
inaccuracy, as the varying accuracy of different areas and groups
shows.

5 INFERENCE OF THE DISTRIBUTION GRID
In the following section, we introduce our approach for inferring
distribution grid models based on the geographical position of grid
devices and consumers’ endpoints. Furthermore, we discuss the
ground truth which we derive from the official DSO grid data, that
we received from SWM, and finally, we evaluate the accuracy of
two inferred models compared to the ground truth model.

5.1 Distribution Network Inference based on
Grid Data

We propose an approach for inferring distribution grid models of
an area based on the grid data of the area. In other words, we
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Figure 13: The extraction of the start and end points and in-
tersection points of roads.

infer a model of the low voltage underground power cables located
within a specific area based on the position of transformers, cable
cabinets and consumer endpoints such as buildings and also the
structure of pathways in the area. We base our inference method on
the primary assumption that the majority of underground cables
are installed along the roads and pathways. Therefore, we take
advantage of the complete and freely available road information of
the area from OSM. Inference Algorithm 1 describes the method we
develop for heuristically inferring a Minimum Spanning Tree (MST)
as the distribution grid model. We consider the provided position
of grid devices and consumers as target nodes taking into account
the structure of the roads. Each road consists of several nodes
representing a line, which we simplify to enforce the inference of
MST along the roads. Therefore, we select the start and end points
of the roads and the intersection point of each road pair. To avoid
including duplicate points in our dataset, we use a set ensuring
the existence of only one copy of any point. As an example, Figure
13 display the roads as blue lines that we give as an input to the
inference algorithm, but only the filtered red points are used for
the generation of MST.

Afterward, we determine the projection of the target nodes on
the nearest road. As an example, Figure 14 displays target nodes
in blue dots, their projection as green nodes and the edge between
target and projection nodes as red lines. We merge the projected
nodes and filtered road nodes to create a base graph containing
edges between every pair of nodes in the union of the two sets
where we consider the distance between nodes in meters as the
weight of the edge. Then, we use the base graph to infer anMST, and
finally, add the edges between target nodes and projected nodes to
the inferred MST and return the tree as the distribution grid model.
We use projected nodes instead of target nodes for creating the base
graph because otherwise, we could not create a clean MST along
the roads.

The inference engine is implemented in Python with the help of
several packages, including but not limited to, NumPy [19], Shapely
[32], and NetworkX [18] for creating and manipulating complex
networks. We store our grid data on a PostgreSQL [8] database
with PostGIS [27] extension enabled. For visualizing and inspecting
the data on the area’s map, which we import from OSM, we also
use the open source geographical information system QGIS [35].

Algorithm 1: Distribution Grid Inference Approach
1 InferDistributionGrid (TarдetNodes,Roads)

input :TarдetNodes , the set of transformers, cabinets
and buildings.

input :Roads , the line geometry of roads.
output :GridModel , A minimum spanning tree

representing the distribution grid.
2 f ilteredRoadNodes = set() ;
3 foreach roadi ∈ Roads do
4 foreach roadj ∈ Roads do
5 f ilteredRoadNodes .add(roadi [0], roadj [0]) ;

// Roads start points

6 f ilteredRoadNodes .add(roadi [−1], roadj [−1]) ;
// Roads end points

7 if roadsAreIntersectinд(roadi , roadj ) then
8 intersectionPoint =

f indIntersectionPoint(roadi , roadj ) ;
9 f ilteredRoadNodes .add(intersectionPoint) ;

10 projectedNodeSet =

projectTarдetNodesOnRoad(TarдetNodes,Roads) ;
11 merдedNodeSet =

f ilteredRoadNodes ∪ projectedNodeSet ;
12 baseGraph = Graph() ;
13 baseGraph.addNodes(merдedNodeSet) ;
14 foreach nodei ∈merдedNodeSet do
15 foreach nodej ∈merдedNodeSet do
16 if edдe(nodei ,nodej ) not in baseGraph AND i! = j

then
17 edдeWeiдht =

дetDistanceInMeters(nodei ,nodej ) ;
18 baseGraph.addEdдe(nodei ,nodej , edдeWeiдht)

19 дridModel =

дenerateMinimumSpanninдTree(baseGraph) ;
20 projectedEdдes =

makeProjectedNodeTarдetNodeEdдe(TarдetNodes) ;
21 дridModel = дridModel ∪ projectedEdдes ;
22 return дridModel

Furthermore, our source code is open-source and freely available
[22].

5.2 Ground Truth Model of Freimann District
To evaluate the quality of the inference algorithm, first, we generate
the ground truth of the distribution model of Freimann based on
the official DSO grid data. We need to construct the compatible
ground truth models because the acquired DSO grid information
is in shapefile format (shape format, shape index format, and at-
tribute format) [7] which are not compatible with our inferred
grid models. Furthermore, the DSO data require cleaning due to
some data inconsistency, data duplication, and errors. After import-
ing the DSO grid data of the Freimann district into our database,
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Figure 14: Projection of the target node on the nearest roads
with an edge between them.

including the location of transformers, cable cabinets, consumer
connections and location of underground cables, we perform a few
steps of data cleaning. For some transformers, cable cabinets and
consumer nodes, there exist duplicate copies of nodes which are
either overlapping or located within a few meters of each other.
We merge these nodes by defining a maximum distance of one to
five meters between them. The reason for using a varying range
as distance threshold is that we inspect the data visually to find
the best threshold based on the type of the node. Afterward, we
inspect the transformers, cable cabinets and consumer endpoints
to detect the ones which are disconnected from the grid due to the
absence of a connection to any neighboring cables. We connect
these isolated nodes by connecting the nodes to the closest cable
located within a node’s five meters proximity, and if such a cable
does not exist, the node is removed from the dataset. In the end, we
review any remaining separated cable which is not connected to
any node or another cable at any endpoints and remove the isolated
cables from the dataset.

After cleaning and preprocessing, we use the cleaned data to cre-
ate a graph representing the distribution grid of the area. However,
we only use the cables from the DSO dataset, since all cables are
presumably connected to either endpoints or other cables. We build
the base ground truth graph by iterating through each DSO cable
line and retrieving the geographical representation of the line from
the database. Then, we convert the line’s data into a set of nodes
with an edge connecting the points which are in the row behind
each other. Afterward, we select the largest connected subgraph
as the model representing the distribution model of the area. We
follow this approach for creating the ground truth model because
the cable line data is stored according to EPSG:31468 Projection
[28] which requires conversion into the fundamental longitude and
latitude we use. As an example, Figure 15 displays the ground truth
graph of Freimann subarea with the largest connected subgraph is
identified with green edges, and the smaller marked disconnected
subgraphs are discarded. Figure 16 shows the created ground truth
model of Freiman subareas one to five with a total cable length of
46484 meters.

Figure 15: Freimann subarea ground truth subgraphs.

5.3 Evaluation of the Inference Approach
To evaluate the accuracy of the inference algorithm, we infer two
separate models based on the DSO and OGM transformers and
cable cabinets data of Freimann and compare the models with the
generated ground truth model. Since our inference algorithm also
requires the information of roads and consumer endpoints of the
area, we integrate the grid data with the extracted related OSM data,
including the structure of the roads and the position of residential
and commercial buildings. The OGM grid data that we use for
generating models are the verified grid devices which we evaluated
in the Subsection 4.3. Figure 17 and Figure 18 illustrate the inferred
models of the DSO and OGM grid data, respectively. We generate
the ground truth model, and the DSO inferred model, both based on
the acquired DSO data of the area. However, the difference is that
the ground truth is created based on the structure of previously
known underground cables, whereas the inferred DSO grid model
generates the structure of the underground cables based on the
position of transformers and cable cabinets.

The visual comparison of the models reveals high coverage of
the ground truth model with the inferred models. Figure 19 displays
the two ground truth, and DSO inferred models overlapping on
the map. Furthermore, we compare the models based on the length
of the models’ inferred cables. Table 2 summarizes the calculated
length of cable for each inferred model, reporting the 88% coverage
of ground truth model by the DSO inferred model and 75% coverage
by the crowdsourced OGM grid model. The results indicate that
the inference approach is capable of inferring accurate grid models.
However, the lower availability of grid data in the OGM dataset as
compare to the DSO dataset indicates that the quality of the model
heavily depends on the availability of distribution grid elements in
the area.

6 DISCUSSION AND LIMITATIONS
The results of the campaign and inference approach demonstrate
that crowdsourcing is a practical, fast and cost-efficient approach
for collecting grid data of an area which can be used for generating
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Figure 16: Ground truth model of the Freimann subarea.

Figure 17: The DSO inferredmodel of the Freimann subarea.

Figure 18: The OGM inferred model of the Freimann sub-
area.

accurate distribution grid models. Although the inferred models
can be used for simple academic simulation studies, they lack the
sufficient accuracy to be used by TSOs and DSOs for power infras-
tructure control purposes. To improve the quality of inferred distri-
bution models, we need to improve the quality and the availability

Table 2: Comparison of Ground Truth Model with DSO and
OGM Inferred Models

Grid Model Cable Length (m) Coverage
DSO Inferred Model 40840 87.86%
OGM Inferred Model 34866 75.01%

of crowdsourced grid data as well as the inference approach. To
improve the quality of grid data, we require increasing the accuracy
of collection devices, invest in training of the participants and the
integration of grid data and models from various official resources.
Although these approaches can be beneficial, they introduce new
financial and legislation burdens.

To improve the accuracy of the inference approach, we require
considering the exceptional inference cases. For example, the dis-
cussed inference algorithm does not make a difference between the
various types of roads and pathways and assumes the existence of
underground cables along any paths such as pedestrian ways and
dirt roads, but in reality, the cables are often not installed along
the dirt roads. Furthermore, MSTs are a sub-optimal solution when
inferring distribution grid models, because DSOs often implement
loops in the distribution systems for increasing the resilience and
reliability of the power grid. Therefore, we suggest investigating
more complex network theory approaches or power flow-based
network design approaches.

Furthermore, we should mention that, although several OSM
power-related elements contain useful information such as voltage
level, several other essential grid characteristics such as the line’s
thermal parameters are missing, and acquiring such information
requires expert knowledge of the local distribution grid. Therefore,
we limit ourselves in this work to inferring the topological model
of the distribution grids.
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Figure 19: Overlapping ground truth and the DSO inferred model.

7 CONCLUSIONS
In this work, we introduced a crowdsourcing framework developed
with the help of the OGM platform which we used for conducting a
crowdsourcing campaign. We also proposed an inference approach
for generating distribution grid models based on the position of
grid devices, consumer endpoints, and roads. The results of the
crowdsourcing event report a precision of up to 82% and a recall
of up to 65% depending on the performance of the participants.
Furthermore, the evaluation of the inferred distribution grid model
based on the official complete DSO grid dataset shows a power
length accuracy of 88% compared to the ground truth. Our results
confirm crowdsourcing as an efficient and beneficial data collection
approach for distribution grid device mapping, which in combina-
tion with an inference algorithm can provide a practical method to
obtain realistic distribution grid models.

As future work, we will work on improving the quality of data
collection methods and inference approach by integrating addi-
tional data sources and methods, such as automatic detection of
distribution grid elements and also automatic improvement and
classification of grid data by utilizing deep learning approaches.
Furthermore, we intend to investigate the applicability of our crowd-
sourcing approach and interference algorithm to the North Ameri-
can distribution grid, where the grid elements are more spread out
over larger geographical areas, and the gird models are also less
accurate in comparison with the German grid. For improving the
precision of inference algorithm on the crowdsourced data, we plan
to consider the use of more complex graph structures, genetic al-
gorithm based methods and spatial clustering approaches of smart
meters data.
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A CROWDSOURCING EVENT SURVEY
RESULTS

After the crowdsourcing campaign, we surveyed the participants
to evaluate their overall experience. In the following, we include
the complete list of questions and the participants’ response.

Figure 21: Do you know what the OGM application is used
for? (20 Responses)

Figure 22: Have you used the OGM application before this
campaign? (20 Responses)

Figure 23:Would you like to use theOGMapplication to help
crowdsourcing in the future? (20 Responses)

Figure 24: How useful did you find the OGM application for
collecting data? (20 Responses)
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Figure 25: Do you have a clear understanding of the task? (20
Responses)

Figure 26: How was the organization of the campaign? (20
Responses)

Figure 27: How easy was it to find devices within your area?
(20 Responses)

Figure 28: Did you have a clear understanding of the differ-
ent devices to be mapped? (20 Responses)

Figure 29: How was the experience of this crowdsourcing
campaign? (20 Responses)

Figure 30: Do you think crowdsourcing ismeaningful for sci-
entific research? (20 Responses)

Figure 31: Are you willing to help in crowdsourcing of data
in the future? (20 Responses)

Figure 32:What days do you prefer to participate in a similar
campaign in the future? (20 Responses)
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Motivation
To earn credits of the course
To have fun
To meet with friends
To know more about power grids
To have a nice time
To win prizes
To contribute to the project objectives
Other

Figure 33: What is the motivation for you to participate in
such a crowdsourcing campaign? (20 Responses)
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