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Abstract

With the further integration of Renewable Energy Sources (RES), the complexity of

power grids is increasing. Due to the fluctuating nature of RES, ensuring the reliability

of power grids can be challenging. For this reason, over the last years, the researchers

and practitioners in the field of Smart Grids (SG) have been offering solutions addressing

these concerns. One interesting concept of SG is Demand Response (DR) which is defined

as changing the demand for electrical energy according to the changes of supply. However,

implementing such a system which is capable of maintaining the power consumption of

a vast number of electrical appliances introduces several more complications including

reliability, scalability, security, practicality, and financial feasibility. To address these

issues, we propose a design and implementation of a DR infrastructure for laptops. Our

approach is capable of monitoring the energy consumption as well as controlling the power

consumption of several laptops in real-time. Furthermore, we emphasize on offering a

purely software-oriented approach for executing DR activities, reducing the initial costs

for the demand side participants to zero. Moreover, we conduct experiments on a number

of laptops to measure the effectiveness and performance of our design. We verify that

our system successfully performs effective DR events. However, the accuracy of estimated

accumulative energy consumption of all participating laptops is relatively low, directly

caused by our purely software based approach which significantly reduces the initial cost

of the DR infrastructure.



Inhaltsangabe

Mit zunehmender Integration erneuerbarer Energiequellen (RES) steigt die Komplexität

der Stromnetze. Aufgrund der schwankenden Natur der RES kann die Gewährleistung

der Zuverlässigkeit von Stromnetzen schwierig sein. Aus diesem Grund haben Forscher

und Praktiker im Bereich Smart Grids (SG) in den letzten Jahren Lösungen für diese

Anliegen entwickelt. Ein interessantes Konzept des SG ist die Demand Response (DR):

Die Änderung der Nachfrage nach elektrischer Energie basierend auf Änderungen der

Versorgung. Die Implementierung eines solchen Systems, welches in der Lage ist, den

Leistungsverbrauch einer großen Anzahl elektrischer Geräte aufrechtzuerhalten, führt

jedoch zu einigen weiteren Komplikationen einschließlich Zuverlässigkeit, Skalierbarkeit,

Sicherheit, Praktikabilität und finanzieller Machbarkeit. Um diese Probleme zu lösen,

schlagen wir eine Ausarbeitung und Implementierung einer DR-Infrastruktur für Laptops

vor. Unser Ansatz ist in der Lage, den Energieverbrauch zu überwachen und den

Stromverbrauch von mehreren Laptops in Echtzeit zu steuern. Darüber hinaus empfehlen

wir die Anwendung eines rein softwareorientierten Ansatzes zur Durchführung von

DR-Aktivitäten, wodurch die anfänglichen Kosten für die Nachfrageseiten-Teilnehmer

auf Null reduziert werden. Des Weiteren führen wir Experimente an einer Reihe von

Laptops durch, um die Wirksamkeit und Leistungsfähigkeit unseres Designs zu messen.

Wir stellen fest, dass unser System erfolgreich wirksame DR events durchführt. Allerdings

ist die Genauigkeit des geschätzten akkumulativen Energieverbrauchs aller teilnehmenden

Laptops ist relativ gering, verursacht durch unseren rein softwarebasierten Ansatz der die

anfänglichen Kosten der DR-Infrastruktur deutlich reduziert.
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Chapter 1

Introduction

Motivation

Global warming and climate change are among the greatest threats facing our planet.

Several scientific works verify that human activities are the primary cause of the problem,

including using fossil fuels for producing electrical energy. As a result, many countries

around the globe are moving toward further adaptation of Renewable Energy Sources

(RES) which plays a key role in reducing greenhouse gas emissions. Despite several distinct

advantages of RES, it’s challenging to integrate RES supplies to power grids. One of the

main concerns is the fluctuating nature of RES, making already complex and dynamic

power grid more vibrant[2]. The utilities are required to provide new supplies for the

consumer’s electrical demand once RES output decreases due to environmental changes,

such as lack of the wind for turning wind turbines.

One widely adopted solution is integrating fossil fueled backup power generators when the

current demand is higher than supply[3]. Although an easy fix, these backup generators

are expensive to run and they are more pollutant than conventional power plants. For

this reason, many practitioners and scientists are investigating approaches to reduce the

demand side energy production instead of increasing the electrical power production[3,

4]. Many studies have proposed several solutions from developing more energy efficient

appliances and materials to the deployment of Smart Grid (SG) for delivering the electrical

energy to consumers in a controlled manner. Therefore, an infrastructure for maintaining

demand side energy consumption based on SG is a practical solution.

6
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Problem Statement

When designing an SG infrastructure, capable of compensating for intermittent reduction

of electrical energy production of RES, the primary concern is maintaining the demand

side power consumption in a way that it matches with currently available RES supply.

The concept addressing this concern is known as Demand Response (DR).

We describe DR as changing the demand for electricity according to the changes of supply

[5]. According to the description, a minimum DR infrastructure consists of a number

of essential components, including power control component on the demand side for

maintaining the energy consumption, a power monitoring system on the demand side

to measure the demand side energy consumption as well as its contribution to the power

grid by reducing the power consumption. Furthermore, it includes a facilitator component

located between the demand side and electrical utilities providing the RES. The facilitator

coordinates the energy consumption of demand side users according to the changes of

supply.

The primary factor for deploying a robust DR infrastructure is the number of participating

consumers on the demand side[4]. However, as the number of electrical appliances joining

such a complex distributed infrastructure increases, several new concerns regarding

scalability and response time arises. These issues are particularity significant when we

expect the DR infrastructure to integrate with fluctuating RES, as real-time responses to

immediate changes in supply are vital.

Furthermore, motivating demand side consumers to participate in a DR program is

challenging. Hardly any electrical appliances are equipped with energy controlling and

monitoring as well as communication components required for a DR infrastructure. As

a result, the consumers are imposed to the financial burden of purchasing and installing

these devices[3]. Moreover, limiting the electrical power consumption of consumers for a

period of time may affect their comfort level and hence resulting in less motivation to

join a DR program. Most of the existing DR infrastructures offer financial incentives for

persuading the consumers, however, due to limited consumption of many users, such a

household consumers, the financial gain is not significant enough to compensate for initial

costs and convince them to take part in DR.

In summary, an effective DR infrastructure, which is designed and implemented to be

integrated with RES, should be able to significantly reduce the energy consumption of

a vast number of electrical appliances in real time. Moreover, it needs to be financially

affordable for customers, to increase their motivations to participate in the DR program.
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Approach

To address the issues explained in section 1.2, we design and implement a distributed

real-time DR infrastructure for laptops. We select laptops as our target group because

of their widespread usage. Furthermore, we use the computing power of laptops for

implementing a purely software-oriented approach toward measuring the current energy

consumption by using mathematical regression models and applying power control

techniques based on built-in power management features of the operating system. Finally,

we use the Internet connection to communicate with another side of DR infrastructure.

As we utilize existing resources provided by traditional laptops to perform the required

activities of a DR event, we significantly reduce the initial costs of demand side

participants to zero cents.

Figure 1.1 summarizes our proposed design for DR infrastructure. On the left side, we

present the demand manager desktop application for the laptop which we design and

develop to control the demand side activities. Demand manager application encapsulates

all the required features and components for performing an effective DR event, including

but not limited to components for measuring the energy consumption as well as systems

for restricting the power consumption. Furthermore, it includes the capabilities necessary

for communicating essential DR related information with the other side of the DR

infrastructure.

On the right side, we illustrate the components constructing the DR provider. It consists

of two essential components, the primary DR provider, and the real-time database.

DR provider is responsible for communicating with electrical utilities and RES to be

informed currently available of electrical supply. Furthermore, it executes the tasks for

scheduling and maintaining a DR event with cooperation with real-time database and

participating laptops to instantly reduce the energy consumption. Finally, the real-time

database empowers us to collect the DR related information sent by participating laptops

as well as propagating the details of a DR event to them in real-time. As a result enabling

us of fast responses to irregular changes of RES.

Moreover, we package and distribute the demand manager application which is accessible

from http://i13dr.de/.
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Figure 1.1: Proposed design for DR infrastructure



CHAPTER 1. INTRODUCTION 10

Contributions

We set the objectives of this thesis to address the issues expressed in 1.2, therefore, our

design offers the following contributions:

• Our design significantly reduces the cost of initializing and maintaining a DR

infrastructure by building upon existing tools and systems, especially costs

of initialization and participations in DR events for demand side consumers.

Furthermore, our design offers high usability, and it requires no to little interactions

with the users, hence, causing a negligible disturbance on users. As a result, unlike

other existing DR infrastructures[3, 6, 7], we increase the motivation of several

participates joining our DR infrastructure.

• Several proposed DR infrastructures designs[8, 9, 10] are unable to perform real-time

demand control, and utilities are required to plan the event ahead. Hence, these

designs are not appropriate to be integrated with RES. However, we take real-time

and low delay responses into consideration while developing and implementing our

DR infrastructure from communication to DR scheduling and power consumption

control systems.

• To reduce the cost of DR infrastructure, we intend to measure the actual energy

consumption of laptops by employing a fitted regression model which estimates the

real power consumption of a laptop and its accessories including the AC adapter,

where the estimation is calculated based on a number of provided system metrics.

There has been a significant amount of work on modeling the power consumption of

the computers in server environment [11, 12, 13], however, little work is conducted

done on small computing devices such as laptops. During this thesis, we propose an

approach for constructing and deploying power consumption models for laptops.

• The majority of the academic research done on the concept of DR is based on

mathematical simulations without any empirical measurements from real world

experiments [14, 15]. Over the course of this thesis, we implement a production-ready

DR infrastructure, and we evaluate its effectiveness and performance by conducting

several experiments. Furthermore, other researchers can use our implementation as

a test bed for to perform DR optimization and scheduling related inquiries.
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Organization

First, we introduce the essential concepts, tools, and fundamentals for understanding

this thesis in Chapter 2. After, in Chapter 3, we review the existing literature on

DR infrastructures as well as power modeling. Subsequently, we analyze the realized

requirements of our system and then describe our approach toward decomposing,

implementing and deploying our design in Chapters 4 and 5 respectively. Afterward,

in Chapter 6 we explain the conducted experiments and discuss our findings on the

performance of our work. Finally, in Chapter 7, we summarize our work by reviewing

our concluding remarks and offering the future works.



Chapter 2

Background

In the following chapter, we explain the concepts and technical terms which are necessary

for obtaining a general insight into the thesis.

Smart Grid and Demand Response

A Smart Grid (SG) is an electrical grid equipped with smart appliances for regulating

and controlling the distribution of electricity from utilities to the demand side [5]. The

utilization of smart devices, such as smart metering devices, intelligent sensors and

Information and Communication Technologies, empowers the smart grid to match the

electricity consumption on the demand side over a period of the current supply; also known

as Demand Side Management (DSM) [3]. Furthermore, DSM facilitates the necessary

real-time response to an irregular availability of RES resulting in more energy efficient

power grids [16]. Demand Response is one of the main activities in DSM which is the

focus of this thesis.

Demand Response (DR) is officially defined as ”a tariff or program established to motivate

changes in electric use by end-user customers; in response to changes in the price of

electricity over time, or to give incentive payments designed to induce lower electricity

use at times of high market prices or when grid reliability is jeopardized” [5]. As the

definition implies, DR benefits both utilities and consumers. From one side, consumers

enjoy a reduction of their energy cost. From another side, decreasing the total power

consumption results in a more reliable electrical grid. Therefore utilities are required to

invest less on increasing the energy supplies.

12
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Many factors need to be taken into consideration when designing and implementing an

efficient Demand Response infrastructure. In the following, we discuss some of the essential

core concepts. However, one should keep in mind that DR covers a vast area of technologies

and ideas and we only include the ones directly related to this work.

Demand Response Management

Adjusting the electricity usage to the currently available electrical supply is achieved

through executing DR events. A successful execution of a DR event requires a

collaboration of following participants[17]:

• Demand side electricity consumers

• DR aggregator communicating with demand side and initiating the DR event

• Independent System Operator (ISO) or Regional Transmission Operator (RTO)

A DR aggregator initiates a DR event once the ISO/TSO informs the DR aggregator about

the required reduction in demand side consumption. Afterward, the DR aggregators,

according to the participants’ availability and energy use profile, select the potential

consumers. Next, the DR aggregator accumulates the total demand and offered the energy

reduction on consumer’s side and reports the result to the ISO/TSO.

During a DR event, the participating users can limit their usage through three methods.

First, they can cut down on their electricity usage by reducing the power consumption

their appliances resulting in load curtailment, for example dimming the light bulbs. The

other option is shifting their usage to slack periods, for instance, turning on the washing

machine at a different time during the day. The last option is making use of onsite

generators instead of using the electricity provided by the main grid. However this option is

not applicable to many participating consumers and also causes undesirable environmental

issues[18].

Demand Side Consumers

To design the most efficient DR infrastructure, it’s essential to take the characteristics of

the demand side consumers into consideration. The electricity consumers, based on their

consumption pattern and the amount of usage, can be classified into Residential and Small

Commercial Consumers, Large Commercial Consumers, and Industrial Consumers. Every

group of consumers has their differing and individual characteristics, but since we focus
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on residential and small commercial users in our work, we investigate only this group in

depth.

Residential users utilize a wide variety of household appliances with different electrical

loads and patterns, contributing to the DR events by either curtailing their load or shifting

their consumption to slack times. However, due to the relatively small power consumption

of many households which leads to insignificant financial return from participating in DR

events in many cases, many residential customers lack the motivation to pay for the initial

investment for establishing the required infrastructure for DR [3]. On the other hand,

many residential consumers are concerned with their comfort level while participating in

the DR events, for example raising a temperature set-point of customer’s HVAC for a few

hours on a hot day might negatively affect their comfort levels. Furthermore, the relatively

random consumption pattern by residential consumers makes it increasingly complex to

model their power consumption which is required for executing successful DR events.

Demand Response Events

An effective DR event heavily depends on the number of participating consumers. As the

number of participants increases so does the success rate of DR event. The majority of

participants cooperate because of financial incentives, while some other participate due to

general responsibly feeling toward environmental issues or preventing blackouts. On the

contrary, many consumers might not be willing to join due to lack of information about

the actual financial gains or amount of discomfort they experience during the event. As

a result, it’s vital to design the DR infrastructure and events in a way that increase the

motivation of customers and addresses their concerns. According to [3, 4], a DR event,

based on its characteristics, can be classified according to, first, their control mechanism,

second, the incentives offered for encouraging the participants and finally based on the

decision-making factors.

When categorizing DR events based on control approach, we focus on the included

participants during the decision-making process of a DR event. Accordingly, we can further

classify them into centralized and distributed events. During execution of a centralized

DR event, every participating consumer directly communicates with the aggregators

through one-way or two-way communication channels. Whereas, demand side participants

of a distributed also communicate with each other in a peer-to-peer manner when

executing the event. The main advantage of distributed events is increasing the scalability

when the number of participants grows. From another side, equipping consumer’s with

enough processing powers and advanced communication infrastructure is expensive and
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complicated.

As mentioned, it’s crucial to offer adequate motivations to convince participants to

join. [4] classifies the proposed motivations into subcategories of time-based DR and

incentive-based DR. The purpose of time-based incentive is applying different electricity

prices during different time periods which encourages the consumers to shift the

consumption to cheaper slack times. On the other hand, the incentive-based DR offers

the users some motivations, usually financial, when they agree to reduce the consumption

during a peak time. Consumers usually voluntarily agree to reduce their load, however,

in some cases, they can be penalized for refusing to enroll. The primary technique used

during incentive-based DR events is Direct Load Control (DLC). While executing a DLC

over a DR event, the aggregators or utilities can remotely control the power consumption

of the consumers by turning the appliances on or off. According to [19], DLC is more

effective for residential and small commercial users rather than industrial ones.

The other factor for classifying DR events is the decision variable, which further classifies

them to task-scheduling DR event and energy-management-based DR events. The former

type of DR events focuses mainly on the time when DR event is running. For example,

they shift the charging time of plug-in electric vehicles (PEVs) from peak time to the

slack time. Wheres, the energy-management-based DR events focus on reducing the power

consumption of running loads, for example, by increasing the thermostat of an AC systems

for a few degrees while maintaining consumer’s comfort.

Smart Grid Technologies For Demand Response

Implementing a functional and efficient Demand Response Infrastructure requires a

minimum set of Smart Grid technologies and devices for facilitating the communication,

decision-making and propagating the DR events. [3] categorizes the necessary devices into

three groups: control devices, monitoring systems, and communication systems.

As the primary purpose of DR is adjusting the consumer’s load according to supply,

utilizing effective power control devices are crucial. The control devices cover a broad range

of tools from load control switches and smart thermostats meant for not only disconnect

the load from the grid but also limit the electricity usage over a period depending on the

applied DR event. Furthermore, the control devices can communicate with DR providers

for receiving the DR event’s information.

The other essential part of the DR infrastructure is monitoring systems, which accurately

measure and report the electricity consumption to the DR providers. The reported usage
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plays a key role in estimating what the DR participants can offer in the means of reduced

load on the grid. The used monitoring systems can vary from smart metering devices,

measuring loads of whole buildings, to Advanced Metering Infrastructure (AMI) and

Energy Management Systems (EMS) which are capable of measuring and analyzing the

consumption down to individual appliances level.

A reliable communication system, which connects all the participating consumers

to the DR aggregators/provider as well as the utilities, is the backbone of a DR

infrastructure. According to the requirements of the DR infrastructure, many one-way or

two-way communication infrastructures with comparable initial costs are available. The

communication systems can be built upon the telephone lines, radio wireless technologies,

the Internet, etc. However, a stable communication system needs to satisfy requirements:

• Scalability to maintain a large number of participating consumers

• Flexibility toward unavoidable network failures

• Security to protect the sensitive information of the grid as well as the participating

consumers

• Protection of the privacy of the participants, especially when the collected data

could reveal their identity and lifestyle

• Quality of service for the used communication infrastructure to support seamless

connectivity and also low latency for real-time and near real-time systems

Electrical Load Measurement

As discussed in section 2.1, the primary objective of a DR infrastructure is controlling the

delivery of electrical loads to the demand side. For this reason, it’s essential to measure

the amount currently consumed electric power accurately.

When discussing electrical load measurement, two terms are important, first the electric

energy and then the electrical power. Electrical energy is a type of energy being delivered

to electrical circuits and afterward being further converted to another type of energies,

such as thermal or kinetic energy. Furthermore, electrical energy, similar to any energy

(E), is defined as the amount of work being executed over a period of time(T), while

electrical power (P) is the rate of performing the work[12]. Equation 2.1 represent the

mathematical relationship between energy, power and time.
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E = P ∗ T (2.1)

In the International System of Units (SI), Joule is the unit of energy; second is the unit

of time and watt is for the power. However, when measuring the electrical load consumed

by electrical appliances, it’s more common to use the derived unit of the kilowatt-hour

(kWh) which is also applied by electrical companies when billing the customers. When

measuring the amount of energy consumed over a period in kWh, the power in kilowatts

must be multiplied by time in hours. For example, an electrical device which consumes

power with a rate of 1000 watts per second, will consume a total energy of 3.6 megajoules

over a period of one hour which is equal to 1 kWh. Since the relation between energy

and power with regards to time is evident, we use the terms electrical power and energy

interchangeably in this thesis, unless stated otherwise.

Active, Reactive and Apparent Power

Electrical devices such as laptops, connected to an Alternating Current (AC) load,

consume the AC power in two forms: The Active Power and Reactive Power. The electronic

components such as inductors and capacitors store the energy instead of transferring the

energy one direction in the circuit. These elements return the stored energy to the circuit

during each AC cycle which is known as Reactive Power. Whereas, the Active Power is

the portion of AC power transferred in a direction in the electrical circuit and consumed

for performing the desired work. The combination of active power and reactive power

is known as the Apparent Power. Finally, the ratio of active power to apparent power

is known as Power Factor. Measuring the amount of active power is the focus of this

work because the active power is the real electrical energy consumed by appliances on the

demand side. Furthermore, the measured active power is the metric used for billing the

customers by electrical utilities.

The unit for active power is watts and is mathematically symbolized with a capital letter

P. The unit for reactive power is Volts-Amps-Reactive (VAR) and is usually expressed with

a capital letter Q. Finally, the unit for apparent power is Volts-Amps (VA) represented

by capital letter S. Figure 2.1 is known as the Power Triangle, illustrates the relations

between Active, Reactive and Apparent Power. We see that the apparent power is the

magnitude of the vector sum of active and reactive power, as mathematically formulated

in 2.2.
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Figure 2.1: The power triangle[1]

S = sqrt(P 2 + Q2) (2.2)

Power Estimation of Laptops

Many DR infrastructures are dependent on psychical monitoring devices which consumers

are required to purchase and install. However, since one of the primary objectives of this

work is eliminating such a devices due to their high costs, we need a software approach

for measuring the real power consumption of laptops.

It’s worth to mention that the laptops’ energy consumption is positively correlated

with the load on their circuits. In order words, when any of the processing load,

networking traffic or screen’s brightness increases, so does the amount of power consumed.

Furthermore, when the laptop’s battery is charging, it causes and extra load on top of

the regular energy consumption.

As a result, when estimating the power consumption of a laptop over a period of time, we

detect and extract the system metrics which highly correlate with the energy consumption.

Afterward, we feed the derived parameters into a previously built mathematical regression

models to calculate the total power consumption. Equation 2.3 shows the mathematical

relationship between estimated energy consumption Eestimated and the energy model f(),

where m1(t) to mn(t) are the extracted system metrics over a period of time and the

estimated energy is the consumed energy over the same period of time.

Eestimated = f(m1(t), ....mn(t)) (2.3)
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Figure 2.2: The MEDAL high-frequency power meter

The MEDAL High-Frequency Power Meter

Over the course of this thesis, we need to monitor and acquire real power consumption

of several laptops to construct power consumption models as well as evaluating the

performance of our design. For this purpose, we use an energy metering device called

MEDAL[20]. MEDAL is a custom built low-cost measurement system for high-frequency

energy data built upon a voltage-sensing circuit, current sensors, and a single-board PC as

a data aggregator. It can achieve up to 50 kHz sampling rate for the real power, apparent

power, and power factor. Figure 2.2 shows the MEDAL device an AC adapter of a laptop

connected to one of its sockets.



Chapter 3

Related Work

As discussed in previous chapters, over the course of this thesis we focus on two areas

of DR and energy modeling. Therefore, we investigate the works done on these concepts.

During the first section of this chapter, we review the existing studies on different DR

infrastructures and in the second part we discuss the various approaches for modeling

energy consumption on electrical appliances.

Demand Response Infrastructures

In recent years, researchers have studied many aspects of DR infrastructures in depth[3, 4],

and several different approaches to DR designs and events have been proposed. However,

the majority of works focuses on the isolated areas of DR and do not provide a design for

a production ready real-world DR infrastructure. Therefore, we are offering a plan for a

practical and complete DR infrastructure in this work.

Laptops as Smart Participants

Residential and small commercial consumers account for about 40 percent of total

electricity consumption in Germany[21]. According to [4], the contribution of this kind

of users to DR is through load curtailment or shifting. However, to increase their

motivation to join the DR events and consequently increasing the effectiveness of the

DR infrastructure, their concerns must be taken into consideration. The primary concern

of these consumers is first, the initial costs of installing the devices needed for enabling

DR infrastructure and second, the experienced discomfort during the DR events.

20
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Despite many obvious benefits of DR, initializing and enabling a DR infrastructure

is financially expensive, and DR providers and demand side consumers are obligated

to pay[22]. The demand side participants have the financial burden of enabling SG

technologies such as load controllers and energy management systems [23]. Since the

participants are often left alone to pay for them, it’s a significant discouragement for

many customers especially the ones with limited consumption and consequently negligible

financial gains from DR events [4]. Furthermore, the DR Providers are required to pay

for operational costs varying from costs of monitoring and communication systems to

administrative and consumer’s educative instructional costs. As a result, in our work, we

emphasize on reducing the cost of DR infrastructure while maintaining the requirements

of a successful and efficient DR infrastructure. To keep the costs as minimal as possible,

we make use of existing tools and devices for enabling the required functionalities of DR

providers and demand side consumers. For this reason, we target laptops as demand side

users to make advantage of their resources.

Several studies have been done on DR designs focusing on residential and small commercial

consumers [24, 25]. However, most of the works emphasize on different financial incentives

and electricity pricing schemes to encourage the users’ participation. Studies indicate

that schemes such as Time-Of-Use (TOU) [24, 26], Critical Peak Pricing (CPP) [27, 25]

and Real-Time-Pricing (RTP) [28, 29] encourage several consumers by decreasing their

monthly electrical bills. However, they put a little effort on minimizing the initial costs.

We select laptops as our target consumers because of their widespread usage in

everyday life in residential, educational and commercial environments. In 2016 about 68.5

percentage of German households owned laptops [30] which we can use for performing

several activities of a DR event. As an example, Operating Systems (OS) offer power

management features for limiting their energy consumption as well as computational

powers for measuring the real energy consumption employing mathematical regression

models. Moreover, the majority of laptops have constant access to the Internet which

we use a communication system for a DR infrastructure. In conclusion, laptops make an

excellent choice as targets for DR participants when decreasing costs is a design goal.

[31] conduct two separate studies on DR event simulations based on DLC for laptops. For

the first part, they simulate a classic DR programs by controlling the consumption load of

a vast number of laptops over a period, and they observe load curtailment in a range of 30

to 90 percents for average baseline load. For the second study, they simulate Continuous

Demand Response event by integrating intermittent RES as power supplies, and they

report a reduction of grid dependency in the range of 26.8 to 33.8 percents. Despite the

relatively good results, their proposed DR approach builds upon on sensing/actuating
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wireless mesh networks for controlling the energy, and unlike our work, they do not make

use of built-in features of laptops. Furthermore, they only run simulations, and their power

consumption models are derived from historical data collected from devices. In contrast,

our work is based on real-world implementation and data collection.

Real-time Responses to Intermittent RES

RES account for 28.2 percents of gross electricity consumption in Germany, and it’s been

steadily increasing over the past two decades [21]. Despite several obvious benefits of

incorporating RES, such as sustainability and leaving behind significantly less carbon

footprint, high integration of RES to the power raises many concerns with irregularity,

uncertainty, and unreliability of supplies [2, 32]. The primary cause of these issues is

fluctuating nature of RES sources, which are commonly the wind and the sun. One solution

for increasing the predictability of the RES sources is weather forecast. However, it’s

not without error [33]. The typical solution for compensating the lack of RES source is

using on-site generators or emergency generators[32]. Nevertheless, these solutions are

financially expensive and they face many governmental restrictive regulations in many

countries [3]. As a result, many researchers and practitioners consider DR as an alternative

solution for addressing the issues of integrating RES.

Exploiting DR for maximizing RES benefits has shown many promising results. However,

it comes with various challenges. Beside the mentioned uncertainties of RES output, the

unpredictability of the power consumption on the demand side increases the complexity

of the system. [7] optimizes integration of RES to the grid by employing an EMS which

aggregates the distributed energy resources and offers them to demand side participants

in an open market with real-time pricing. Moreover, their simulation results indicate that

real-time pricing yields good result in matching the demand levels with supply. However,

in our work instead of real-time pricing, we practice real-time DLC. Furthermore, we

emphasize on implementing real-time and low delay response for all aspects of our design.

When emphasizing on real-time interaction and communications, scalability becomes

a serious issue as the number of demand side participants increases. To address this

problem, [34] proposes an approach for Electric Vehicle (EV) charging control framework

by utilizing a pub/sub middleware system to optimize the EV charging. In their work, they

aggregate the battery charging demand profile of several EVs, for matching the demand

with supply using valley feeling technique. They also illustrate that a major bottleneck

is aggregating collected data of charging profiles. Moreover, they run simulations and

evaluation for three different aggregation approaches: centralized, decentralized and
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decentralized with in-network aggregation. Moreover, they observe that a decentralized

with in-network aggregation approach yields a better result with less computational

overhead in comparison with other methods. Similar to their work, we require to monitor

and aggregate the power consumption of laptops in real-time. As a result, our aggregation

approach is similar to their technique with some differences which we discuss in depth in

chapter 5.

Real-world Implementation

As discussed in the previous sections, several researcher and practitioners have proposed

many DR approaches for residential and small commercial consumers[15, 35, 14]. [15]

introduces a DR scheduling approach for household electrical appliances employing

genetic algorithms optimization. They report a significant electricity cost reduction and

peak-to-demand ratio matching through simulating different electricity pricing schemes.

Besides, [35] investigates a DR event for shifting energy loads of residential consumers,

allowing a better integration of RES. Their simulation on economic models reveals a

moderate reduction in the electrical cost of customers as well as load reduction during

peak time.

Both of the discussed studies only perform mathematical simulations and modelings.

Although they indicate promising results of utilizing DR, they do little work on

implementing a real-world proof of concept. On the contrary, during this thesis, we

emphasize on implementing and evaluations a production ready DR infrastructure.

Software-based Energy Modeling

Reduction of initial financial costs of the DR infrastructure is one of our first-order

design constraints. Over previous chapters, we explained that one of the expensive

components is energy monitoring devices on demand side. Therefore, to reduce the

costs of power auditing systems, we make use of built-in features of OS as well as

power consumption models to estimate the real power consumption of laptops. Several

researchers have explored the energy consumption models for server environments and

data centers[12, 36, 13, 37]. Nevertheless, studies on constructing energy models for laptops

and battery operated electrical appliances are relatively limited[38]. The reason for the

lack of interest in this area is the significantly larger amount of energy consumed by data

centers in compare to small personal mobile devices. As a result, we develop an approach
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for modeling power consumption on laptops according to the existing studies on energy

modeling of computers in the server environment.

According to [36] an appropriate mathematical model for estimating power consumption

needs to satisfy several requirements. These constraints include the accuracy of the energy

estimation, the speed of prediction, the generality of the model when applying to various

systems with different hardware and software specifications, affordable non-intrusive

measuring equipment and last but not least the simplicity of the design.

Furthermore, [36] classifies real-time power modeling approaches into two groups, first,

detailed analytical power modeling and second, high-level black-box modeling. The former

modeling exploits the CPU performance counter for accurately estimating the energy.

However it’s only applicable one particular processor, and because of its reliance on the

micro-architectural of the processor, it’s not portable from one system to other. The

other modeling technique takes advantage of system metrics, such as CPU, disk and

memory utilization for constructing linear or multiple regression energy estimation models.

This type of modeling is less accurate than the first one; however, it’s more general

and portable due independence from system specifications. Furthermore, [36] constructs

and evaluate five different energy consumption models by means of Mantis [39], a power

modeling non-intrusive system. Mantis uses a one-time model fitting, during which system

utilization metrics are fitted to power readings of an external AC power meter. Evaluations

of the generated power models indicate that the utilization-based regression models have

better performance in comparison to other models. In our work, we follow the same

approach for creating linear regression energy consumption models for laptops based on

system utilization counters.

All the previously mentioned studies fit and generate energy models using external

assistance like AC power meters or a second computer. In contrast [38] introduces

an approach for self-constructing energy modeling system for laptops and mobile

devices called Sesame. It exploits the smart battery interface of laptops for self-power

measurement. Despite the accurately estimated power, their energy models only

measure the power consumption of laptops without taking the AC battery charger into

consideration. In our work measuring the amount of energy drained by laptops through

the battery charger is essential. Therefore, we still require making use of external power

meters for collecting data needed for fitting the energy models.

In summary, according to different approaches for constructing power models, the

workflow for generating power models for laptops consists of three phases:

• System Utilization Metrics Extraction: We record the OS utilization metrics of the
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system while we read the real power consumption of system from a connected AC

adapter.

• Fitting and Evaluating the Power Model : By using different regression and Machine

Learning techniques the extracted metrics are correlated with the recorded power

consumption readings to create a mathematical equation for estimation the real

energy consumption.

• Energy Estimation Model Deployment : We deploy the generated model on the

different machines to be used for power consumption prediction.



Chapter 4

Requirements Analysis

In the following chapter, we elicit the requirements of the DR infrastructure. In section

5.1 we provide an overview of the purpose, objectives and success criteria of our design.

After, in section 4.2 we explain the functional and nonfunctional requirements that our

system must satisfy. Finally, in section 4.3 we describe the features and functionalities of

the system through scenarios, use cases, etc.

Overview

This thesis aims to design and implement a real-time and distributed DR infrastructure

for laptop devices with reduction of initial costs as a first-order design constraint. In

other words, we focus on creating low delay DR infrastructure with direct load control

on laptops in response to immediate changes in the electrical supply of RES, in a way

that the curtailed energy consumption on the demand side matches the available electrical

supply. Moreover, we make use of several built-in functionalities and features of the OS of

laptops to dramatically decrease the initial cost of participants of DR events to zero cents.

For simplicity, we refer to our designed DR infrastructure as i13DR from now on. The i13

part in the i13DR refers to Informatics 13 - the Chair for Application and Middleware

Systems at Technical University of Munich’s Department of Informatics, where this thesis

is realized and developed, and DR refers to Demand Response.

i13DR is a DR infrastructure that facilitates direct control of power consumption on

laptops to match with the available supply provided by RES. We design i13DR according

to minimalistic requirements of a DR infrastructure stated in chapter 2. Consequently,

our model consists of two parts, one desktop application running on demand side on

26
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laptops and multiple web applications residing on our servers acting as demand response

providers, aggregating demand side participants, etc. For this reason and the sake of

clarity, we name the bundle of i13DR web applications as i13 Demand Response Provider

(i13DRP) and the i13DR desktop application as i13 Demand Manager (i13DM).

i13DR Requirements

In the following subsections, we describe the functional and nonfunctional requirements

of i13DR. A functional requirement represents the interaction of i13DR with users

or any other external systems, independent of i13DR implementation. In contrast,

nonfunctional requirements define the functionalities which are not directly related to

i13DR’s interactions but apply to various aspects of i13DR from performance to reliability

[40].

Functional Requirements

In this subsection, we present the functional requirements of i13DR. To make it more

comprehensible, we separate the lists of requirements of i13DM and i13DRP. We realize

the following functional requirements for i13DRP:

• When scheduling for a DR event, the i13DRP creates and publishes the DR schedules

to one or multiple i13DM, during which the i13DM activates the power control mode.

i13DRP creates the DR schedule based on one of the defined formats of the weekly,

daily or one-time event.

• i13DRP receives and maintains a power consumption profile for each laptop. i13DM

creates the profile, and it’s a weekly profile containing a record for every minute of

the day holding the average energy consumption of the laptop in normal mode and

power save mode and the probability that the laptop is connected to electricity grid

through AC adaptor.

• i13DRP receives and maintains a location profile for each laptop. i13DM creates the

profile, and it’s a weekly profile containing a record for every minute of the day with

the longitude and longitude, zip code as well as the accuracy of the found location.

• The administrator of the i13DRP uploads and publishes the power model required

for estimating the power consumption by i13DM.
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• The administrator of i13DRP has access to the power consumption and location

profile of all participating laptops.

• i13DRP shows the most recent geographical location of laptops to the administrator

as well as their online status.

• i13DRP provides the administrator with a list of all participating laptops. The

administrator can filter the laptops based on their location and their unique

identification number.

• i13DRP receives the currently available supply of electrical energy of RES in

real-time and creates DR schedules for participating i13DM based on their power

consumption and location profiles.

• The administrator of the i13DRP can view or download the system metric readings

gathered and provided by i13DM.

• The administrator of i13DRP have the option to remove the participating from the

system. Furthermore, he/she can observe the reported crashed and diagnostic logs

of i13DM.

• The administrator of i13DRP remotely changes the settings of one individual or a

group of selected i13DM, including, enabling and disabling logging of the laptops’

system metrics, restarting the i13DM, deleting the locally stored data and modifying

the update interval of power profiling.

We elicit the following functional requirements for i13DM:

• i13DM creates a weekly location profile on the first start up and publishes it to

i13DRP. Furthermore, the profile is periodically updated by i13DRP. The profile

represents the most probable location of the laptop at any given time during the

day. The location data consists of the latitude and longitude, the accuracy of located

location estimate as well as the zip code.

• i13DM creates a weekly power consumption profile on the first start up and publishes

it to the i13DRP. Also, i13DM updates the power profile periodically. The profile

holds an estimate of laptop’s energy consumption rate in normal mode and power

save mode and the probability of laptop being connected to the electricity grid

through the battery charger. i13DM measures the power consumption according to

the provided power models.

• To motivate the users to participate, i13DM displays the statistics of DR events

including the number of minutes the laptops attended, the amount of energy saved
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in kWh during the execution of DR event as well as the amount of saved money in

Euro.

• i13DM provides the user with the option to allow or disallow the laptops

participating in the DR event. furthermore, users can limit the time during which

laptops can attend a DR event to certain periods of the day.

• Once i13DRP publishes a schedule of a DR event, i13DM fetches the plan and

activates the power control accordingly.

• Once i13DRP releases a new power model, i13DM downloads and updates its local

energy model.

• i13DM automatically downloads and installs new versions of the i13DM desktop

application.

• i13DM pushes informative notifications to the users before executing activities that

might affect the normal behavior of laptops. These actions include but not limited

to installing a new version of the application, activating and deactivating the power

control mode during a DR event.

• In the case of i13DM crashes and system failures, it reports the crash logs and stack

traces to i13DRP.

• i13DM automatically launches at the system start up. However, this feature is

controllable by laptops’ user.

• i13DM continuously runs in the background and user can control the behavior of

the i13DM though its tray icon presented in the taskbar.

• Upon the decision of i13DRP’s administrator, i13DM logs and reports system

utilization metrics to i13DRP. The readings include but not limited to energy

consumption rate, voltage and capacity of the battery, remaining capacity of the

battery, charging and discharging rate of the battery, screen’s brightness, CPU,

memory, hard disk and network utilization and read/write rate. Afterward, i13DM

send them to i13DRP in a formatted version.

• i13DM reports its online status and availability to i13DRP.

• i13DM should control the power consumption of laptops by using built-in power

management features of the OS to put them to power save mode during execution

of a DR event.

• At the initial start-up of i13DM, it analyzes the laptop’s hardware specification,
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including but not limited to the architecture of CPU, memory, storage, video card,

networking, peripheral, etc. Later, i13DM submits the collected data to the i13DRP.

Moreover, i13DM extracts detailed information on the specification of the battery

consisting of battery’s capacity, voltage, manufacturer, etc.

Nonfunctional Requirements

Similar to the previous subsection, we separate the nonfunctional requirements of i13DR

into two lists, one for i13DR and the other for i13DRP.

First, we name the realized nonfunctional requirements of i13DRP:

• Since i13DRP consists of several web applications to perform the required

functionalities; it’s necessary to make use of standard APIs and protocols to facilitate

the communication among components.

• When any of the i13DRP applications fail, they should recover automatically and

with a small delay.

• i13DRP should scale up according to the number of participating laptops for

maintaining the reliability and real-time responses.

• i13DRP should only acquire and manage the data required for performing a

successful and effective DR program. It’s not allowed to obtain any additional data

which violates user’s privacy or reveals their identity.

Finally, we list the realized nonfunctional requirements for i13DM:

• i13DM must require the minimum interaction with the human users. It should run

in the background and perform all necessary tasks independently on its own.

• A robust DevOps infrastructure is responsible for building, testing, packaging,

releasing, configuring and monitoring the i13DM.

• At any given time only one instance of i13DR must be running on one single laptop.

• i13DM should support real-time bidirectional communication with i13DRP.

• When i13DM is running, it should cause negligible overhead on the laptop without

noticeable effect on the laptop’s performance.

• All the system failures exceptions caused by i13DM should be handled gracefully

without distracting the user.
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• Participating users should not bear any financial burden when installing i13DM and

participate in a DR events.

i13DR System Models

In the following section, we explain the i13DR infrastructure using abstract models to help

us analyze and understand the functionalities and requirements of the system. First, we

describe a few scenarios we find most relevant. Afterward, we model the most important

use cases of the system, and finally, we explain the analysis object model and dynamic

models of i13DR.

Main Scenarios

A scenario is ”a narrative description of what people do and experience as they try to

make use of computer systems and applications” [41]. In other words, it’s a detailed and

informal description of a feature of the infrastructure from the viewpoint of a user helping

to extract and understand the requirements of the system better [40]. Here we describe

three main scenarios of i13DR presenting the most important features

The first scenario demonstrated in table 4.1 represents the i13DR response to irregular

changes of RES. As the production decreases, i13DR creates and releases DR schedules

for reducing the accumulative power demands of laptops.

Table 4.2 illustrates the scenario, during which i13DM launches and monitors the laptop’s

resources and power consumption.

Finally, in the third scenario presented in table 4.3, we describe the first startup workflow

of i13DM.

Use Case Model

In this part, we discuss the use cases of i13DR using UML use case diagram. A use

case describes a feature or a functionality of the system which the user of the system

comprehends. Furthermore, we take advantage of use case diagram to aggregate all the

features from the actors’ point of the view[40]. For illustrating the diagrams, we use the

Unified Modeling Language (UML) which is the standard modeling language for designing

a system in the field of software engineering[42].
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Scenario name RES Supply Reduction

Participating actor instances Wind turbines as RES

Multiple laptops as DR participants

The flow of events 1. A 1 MW wind turbine steadily produces electricity
at its 50 percent capacity. After a while, due to a drop
of wind, its production falls off to 45 percent of the
capacity resulting in 100 kW loss in production. The
electrical utility immediately notifies the i13DRP of this
loss through.

2. i13DRP aggregates the existing power consumption
profiles and location profiles of the registered laptops
which are within the operational area of the
wind turbine. Accordingly, the i13DRP performs
optimization tasks to generate a DR schedule for the
candidate laptops to compensate for the 100 kW loss of
wind turbine. Once the potential participating laptops
are selected, i13DRP immediately publishes the DR
schedule.

3. Once i13DM fetched the new DR plan, they
immediately download and update their internal
schedule accordingly.

4. i13DM regularly checks its local DR schedule to
activate the power control mechanism at the correct
time. Finally, when the DR program is over, it
deactivates the power control and sets back the laptop
to normal power consumption mode.

Table 4.1: Scenario 1: i13DR response to irregular RES changes

Figure 4.1 illustrates the use cases we realize for i13DR. Typically an actor is described

as any entity interacting with the system including a user, another system or system’s

physical environment [40]. However, to enhance the understandability of our diagram and

because i13DR internally consists of two separate parts of i13DM and i13DRP interacting

with one another, we recognize both i13DM and i13DRP as the studied systems as well

as actors. As represented in figure 4.1, we have three external actors, on the left, we have

the DR participant who directly interacts with i13DM. On the left, there is administrator

of i13DRP and electrical utilities interacting with i13DRP, and finally, in the middle,
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Scenario name Cycle of i13DM activites

Participating actor instances OS as the launcher of i13DM

The flow of events 1. OS launches the i13DM on system start up.

2. After a full launch, i13DM queries i13DPR to retrieve
any recent power models, application settings and DR
schedules as well checking for new version of the i13DM
application.

3. Meanwhile, i13DR monitors the resources of laptops
periodically and update the power consumption profile
by utilizing power model and extracting system metrics.
Moreover, it repeatedly locates the laptop’s location
using locations APIs and updates the location profile.
Once i13DM successfully updated the local power
consumption profile and location profile, it publishes
them i13DRP.

Table 4.2: Scenario 2: Cycle of i13DM activities

i13DRP and i13DM communicate with each other for initiating and performing the DR

related activities.

Since we already describe several functionalities and behaviors of i13DR in section 4.2

and 4.3.1, we believe most of the mentioned use cases in the diagram are clear for the

reader. However, we describe five essential use cases in detail because of their complexity.

First, table 4.4 explains the use case for executing one DR event initiated by the electrical

utility. Then, table 6.6 illustrates the initial procedure of analyzing system specification

and generating the first location and power consumption profiles and tables 4.6 and

4.7 describes the use cases of updating location profile and power consumption profile

respectively. Finally, table 4.8 shows the use case of the i13DM executing one cycle for

updating running profile which is extended by use case of power profiling.

i13DR Analysis Object Model

In the following subsection, we use class diagrams for describing the structure of i13DR

through classes and objects. Classes are abstractions of the behavior and attributes of

the system and objects are entities that encapsulate behavior and state of components
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Scenario name Initial Startup Workflow

Participating actor instances User launching the laptop

The flow of events 1. The user decides to join the i13DR infrastructure.
First, he downloads the i13DM compatible with his OS
from i13DR homepage and installs the application.

2. Afterward, he launches the application for the firs
time. i13DM opens a window and thanks him for
joining the i13DR. In the background, first, i13DM
generates a unique random anonymous ID of the
machine and sends it to i13DRP to be registered. Then,
it sets up the required initial settings. Then, i13DM
downloads the deployed power model and initialize it for
energy estimation and power profiling. Later on, i13DM
extracts the hardware and software specifications of the
laptop, including but not limited to CPU architecture,
memory and storage specification, networking, battery
capacity and voltage, etc. Finally, i13DM creates the
first weekly power consumption profile for the laptop by
using the power model as well as the weekly location
profile and submits them to i13DPR.

3. The user is not required to do any further tasks.
He closes the welcome window and i13DM runs in the
background and communicate with i13DRP as required.
Furthermore, by default, i13DR launches on system
start up automatically without causing the user any
distraction.

Table 4.3: Scenario 3: Initial startup workflow of i13DM

[40]. For keeping the class diagrams precise but yet rather informative, the figure only

represents the most valuable objects, relations, and attributes. Furthermore, we model

i13DM and i13DRP by eliminating actors and their roles.

Figure 4.2 illustrates a UML diagram representing the system model of use cases

mentioned in the previous subsection. On the left side of the figure, we present the i13DR

classes, and on the right side, we include the classes for i13DRP. The i13DM classes

characterize the system required for power and location profiling as well as performing

DR events. LocationProfile and PowerConsumptionProfile inherit the Profile class holding
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Figure 4.1: Use case diagram of i13DR

all the necessary attributes and methods for creating, storing and updating profiles.

PublisherSubscriber class is responsible for publishing the profiles. MonitorResources

in association with Locator and PowerModeler initiates the activities for profiling

and monitoring resources. Furthermore, Watcher subscribes to PublisherSubscriber

for receiving power models and DR schedules and PowerController is responsible

for activating and deactivating the power controls according to the schedules. From

another side, i13DMProfiling subscribes to PublisherSubscriber for obtaining the power

consumption and location profile from i13DM and Scheduler is responsible for scheduling

a DR event with a specific start and end time.

i13DR Dynamic Model

In the last subsection, we use state machines to illustrate the internal behavior of i13DR

as a whole. The state machine diagram represents the dynamic behavior of the system

through states and the transitions between them. The states are a specific set of values for

an object and transitions are the conditions which need to be satisfied to move from one
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Use case name Perform DR Event

Participating actors Initiated by Utility

Communicates with i13DM and Administrator

The flow of events 1. Electrical utility informs the i13DRP about X kWh reduction
of supply.

2. i13DRP selects the candidate participating laptops
according to existing power profiles and location profiles of
all registered laptops and by the help of an optimization and
scheduling algorithms in a way that amount of energy saved by
selected laptops matches the X kWh of loss. Once i13DRP picks
the participating laptops, it creates a DR schedule containing
the start time and duration of the DR event, during which
laptops should activate the power control. Finally, i13DRP
submits the schedule to the real-time database.

3. Once the new DR plans are available, the subscribed i13DMs
fetch the program from i13DRP and update their local schedule
accordingly and activate the power control at the appropriate
time.

Entry condition • The aggregated energy consumption and location profiles of
laptops are available.

Exit condition • An adequate number of laptops are participating in matching
the X kWh reduction of supply with curtailed demands.

Quality requirements • DR schedules are submitted no later than 1 second after
utility’s notification.

• i13DM is informed of new DR schedule in near real-time.

Table 4.4: Use case 1: Performing one DR event

state to the other[40]. We believe that the majority of primary requirements of i13DR have

been realized so far, for this reason, and to avoid stating the obvious we only demonstrate

the state diagram for performing a DR event.

Figure 4.3 shows the UML state machine diagram of a DR event. In the beginning,

i13DRP assumes that the demand matches with the supply, and it continues watching

the current supply. Once RES supply goes down and the system requires to cut back on
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Use case name Initial Profiling and Analysis of Laptop

Participating actors Initiated by laptop’s user

Communicates with i13DRP

The flow of events 1. The user launches the i13DM for the first time after
downloading and installation.

2. i13DM realizes it’s the initial setup of the application.
Therefore, it executes several platform specific commands to
extract the hardware and software specifications including
but not limited to the motherboard, BIOS, cache memory,
disk drives, operating system, physical memory, peripherals,
video card, processors, sound devices, display and battery
specifications. Once the analysis is over, i13DM submits them
to i13DRP in properly formatted style.

3. i13DRP receives the system specifications and stores it in the
database under participant’s profile.

4. i13DM downloads the power model from i13DRP
containing a mathematical equation of a regression model for
calculating power consumption of the laptop in normal mode and
power save mode. Afterward, i13DM acquires the required system
metrics for the power model including but not limited to CPU,
disk, and memory utilization and inserts them to power model for
having an estimate of laptop’s power consumption. Then, i13DM
initializes an object for every minute of the day and every day
of the week from Monday to Sunday and pushes them to a list.
After, for every object in the list, i13DM set the normal mode and
power save mode power consumptions according to the measured
values. Also, i13DM fixes the probability of the laptop running,
the i13DM application running and the laptop is connected to
AC adapter to 50 percents. Once all the objects in the list are
initialized with proper values, first, i13DM stores the list in the
local database and then submits them to the i13DRP.

5. i13DRP receives and stores the initial power consumption
profile under the particpatns profile.

Table 4.5: Use case 2: Initial analysis and profiling of laptop by i13DM
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6. i13DM uses geolocation APIs to locate the current
position of the laptop. Then, it initializes an object for every
quarter of an hour of the day and every day of the week from
Monday to Sunday and pushes them to a list. Afterward, for
every object in the list, i13DM sets the longitude, latitude,
accuracy of measurement and the zip code of the location.
Furthermore, it fixes the probability of the laptop being
presented in this area to 100 percent. Finally, once the location
profiling is over, it stores the list in the local database and
submits it to i13DRP.

7. i13DRP receives and stores the initial location profile for the
corresponding i13DM laptop.

8. i13DM finishes initial system analysis and profiling and
keeps running continuously in the background.

Entry condition • It’s the initial startup of i13DM.

Exit condition • The analysis of system specifications are submitted to and
stored at i13DRP.

• The initial power consumption and location profiles are
created and sent to i13DPR.

Quality requirements • The overhead of system analysis is negligible on performance
of the laptop and users do not notice any adverse effect on usage.

Table 4.5: Use case 2: Initial analysis and profiling of laptop by i13DM

the consumption, it goes to optimization and scheduling state and publishes the schedules

for i13DM. On the other side, i13DM continuously watches for new DR schedules. Once

there is a new timetable available, it updates the local plan. Then, it activates the power

control when DR event starts and subsequently deactivates the power control when it

finishes.
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Use case name Updating Location Profile

Participating actors Initiated by i13DM

Communicates with i13DRP

The flow of events 1. Every 90 seconds i13DM locates the current geographical
location of the laptop, and it inserts the determined longitude,
latitude, accuracy of measurements and zip code to its local
database.

2. After insertion of the new location, i13DM queries the
previously recorded sites with the same recorded time of the day
and day of the week of the latest recorded location and groups
them by their zip code. Afterward, it counts the number of rows
for every zip code and selects the longitude and latitude of the
group with the highest count. Then, it divides the maximum
count by the total number of retrieved records and labels them
as the probability of the laptop to be presented this location.
Finally, it updates the corresponding location profile in the local
database. Once the profile is updated, i13DM submits the new
location profile to i13DPR.

3. i13DRP receives the new location profile and update its
version accordingly.

Entry condition • i13DM already executed the initial system analysis and
profiling.

• i13DM have access to the Internet.

Exit condition • i13DM stored the new location profile in the local database.

• The new location profile is sent and stored at i13DRP.

Quality requirements • Updating the location profile has minimal adverse effect on
laptop’s usage.

Table 4.6: Use case 3: Updating location profile by i13DM
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Use case name Updating Power Profile

Participating actors Initiated by i13DM

Communicates with i13DRP

The flow of events 1. Every few seconds (dependent on the OS), i13DM measures
the current power consumption in normal mode and power save
mode using the power model and system utilization metrics.
Moreover, it checks that if the laptop is connected to AC
adapter. Finally, it inserts the readings to the local database.

2. After insertion, i13DM queries the previously stored power
consumption records to find the rows with equal time of the day
and day of the week with the last recording and groups them by
the status of the AC adapter connectivity. After, it calculates
the arithmetical mean of power consumption in normal mode
and power save mode for all retrieved records in each group and
divides the number of rows in each group by the number of all
fetched rows and labels it the probability of being connected to
AC adapter. Finally, it updates the corresponding record in the
local database with new measurements and sends it to i13DRP.

3. During power profiling, this use case extends the use case of
Updating the Running Profile.

4. i13DRP receives the updated energy consumption
profile and updates its version.

Entry condition • i13DM already executed the initial system analysis and
profiling.

• i13DM have access to the Internet.

Exit condition • The new power consumption profile is stored in local database.

• The new power consumption profile is sent and stored at
i13DRP.

Quality requirements • The overhead of updating power consumption profile is
negligible on laptop’s performance.

Table 4.7: Use case 4: Updating power profile by i13DM
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Use case name Updating Running Profile

Participating actors Initiated by i13DM

Communicates with i13DRP

The flow of events 1. Every 90 seconds, i13DM inserts a record to the database
indicating that i13DM, as well as the laptops, is running.
Afterward, it checks if the most recent record before the last
record is older than 90 seconds. If it is the case, then it inserts
several new rows to database setting the status of i13DM and
the laptop as not running. The timestamps of the new records
begin from the timestamp of the most recent record before the
last record, and it adds up 90 seconds until it reaches the last
inserted record.

2. After insertions, i13DM fetches and groups the previously
stored running profiles for every minute of the day and every
day of the week. Then, for every group, it divides the number of
records with stored i13DM running status as true to a number
of all rows in that group and labels them as the probability
of i13DM running. Moreover, with the similar approach, it
calculates the probability of the computer running during that
time. Finally, it updates the corresponding power consumption
profiles in the local database and submits them to i13DRP.

3. i13DRP receives the updated energy consumption
profile and stores it accordingly.

Entry condition • i13DM have access to Internet.

Exit condition • The new power consumption profile is stored in local database.

• The new power consumption profile is sent and stored at
i13DRP.

Quality requirements • The overhead of updating power consumption profile is
negligible on laptop’s performance.

Table 4.8: Use case 5: Monitoring and updating the running profile of i13DM
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Figure 4.2: Class diagram of i13DR
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Figure 4.3: State machine diagram of a performed DR event



Chapter 5

System Design

In this chapter, we transform the analysis models of i13DR to system design models

during which we define the design goals of 13DR and decompose our system into smaller

subsystems[40]. In the following sections, first, we provide an overview of our system

design, then we identify the design goals of our work and represent the subsystems

decomposition in a way they are realized and implemented precisely. Furthermore, we

describe the selected strategies and techniques for building and implementing i13DR

including hardware/software mapping, persistent data management approaches, access

control policies, and finally managing the boundary conditions of the system.

Overview

In the previous chapter, we explain the requirements, features, and functionalities of

i13DR. We acknowledge several functional and nonfunctional requirements of i13DM and

i13DRP explaining the specific outcome of our work. Furthermore, we clarify the most

important and complex use cases of i13DR by taking advantages of scenarios and use

case diagram and finally, we use analysis object model to illustrate the critical classes and

relationships in our work. However, during the requirement analysis, we do not describe

our software architecture and the way i13DR is realized and implemented. As a result,

we utilize the requirements analysis to achieve the qualities of the system as well as the

approaches for developing the subsystems of i13DM and i13DRP. Furthermore, we explain

several technologies, such as web servers, databases, security measure, development

frameworks, which we do not develop but utilize, to facilitate the activities of i13DR.

44
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i13DR Design Goals

During the first phase of system design, we identify the most critical qualities of our system

also known as design goals which are realized by the help of functional and nonfunctional

requirements and application domain[40]. According to [40] system recognizes and satisfies

multiple design goals under several criteria such as performance, dependability, cost,

maintenance and end user experience. As a result, we recognize and develop the following

design goals for i3DR; for the sake of clarity, we present design goals of i13DM and i13DRP

separately.

First, we realize the following goals for i3DRP:

• i13DRP should be fault tolerant to failures of any included applications and loss of

connectivity.

• All parts of i13DRP should recover automatically and immediately in case of failures

and system crashes.

• i13DRP should constantly maintain bidirectional real-time connections with every

instance of i13DM.

• Performance of i13DRP should not noticeably decrease as the number of connected

i13DM increases. Also, it should scale up accordingly.

• i13DRP should be tolerant to systematic or intentional failures caused by i13DM

demand side users.

• i13DRP should securely protect the sensitive DR participants and utility

information.

• Any communication between i13DRP and i13DM should be securely encrypted.

• To keep the financial cost of development and deployment minimal, all the utilized

technologies and tools should be supplied from free and open source resources.

However, when a free alternative is not available, the necessary tools should be

purchased.

• All the applications developed for i13DRP should be designed according to the

proper software engineering design patterns for minimizing the required effort for

extending and modifying their functionalities.

• i13DRP should use standard communication protocols for connecting different

i13DRP applications to minimize the effort required for porting the system to other
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platforms.

• i13DRP should offer high usability for human administrators.

Then, we explain the following design goals for i13DM:

• When i13DM needs to communicate with i13DRP, it should be able to establish

a non-blocking bi-directional real-time connection with i13DRP with less than one

second delay.

• All the essential activities of DR events which are expected to run on the demand

side should be encapsulated, packaged, and included in i13DM.

• i13DM, while running on participant’s laptop, should have a negligible effect on the

performance of laptops as well as consumed resources such as network and battery.

• i13DM should be tolerant to any intentional or unintentional malicious interaction

of participant.

• i13DM should recover from any crashes and system failures immediately and

automatically. Furthermore, i13DM should submit all the collected exceptions and

stack traces to i13DRP.

• By enforcing security measures, i13DM should minimize the abilities of any attackers

to sabotage the participants’ laptops.

• Execution of i13DM and performing DR programs should not impose any financial

cost on the users.

• Building, packaging, releasing, configuring and monitoring of i13DM should be done

automatically by utilizing DevOps tools.

• Installing updates and new versions of i13DM should be executed automatically and

seamlessly on users’ laptops.

• i13DM should be a cross-platform desktop application running on a variety of

platforms and operating systems.

• Users of i13DM should be able to easily, without and prior required knowledge,

control the behavior of i13DM to the extent it allows. However, all that required

operations for performing DR, monitoring, etc should be executed automatically in

the background.

Finally, while designing, implementing, building and releasing different parts of i13DR,

we emphasize on satisfying all the stated design goals.
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i13DR Subsystem Decomposition

To decrease the complexity of the solution domain, we break down the whole system

into smaller parts which are more straightforward to be realized [40]. These smaller,

simpler parts, are called subsystems, encapsulating the behavior of a few solution domain

classes. Moreover, they provide a set of operations through well-defined interfaces,

called services. We decompose the i13DR into subsystems with low coupling and high

coherence for decreasing the dependencies between two or multiple subsystems and also

for increasing the dependencies among classes within a subsystem [40]. Finally, to maintain

the complexity of i13DR, we utilize the suitable system architecture for i13DM and

i13DRP.

Figure 5.1 illustrates a UML diagram representing the system decompositions of i13DR.

We break up the system according to discovered materials in chapter 4, and for better

readability, we are omitting attributes and operations from classes. On the left side of

diagrams, the subsystems constructing i13DM are included, and on the right side, we

present subsystems of i13DRP.

DRManager, DeviceManager and DeviceAnalyzer are the fundamental parts of i13DM

carrying out the necessary tasks of a DR event. DeviceAnalyzer contains the

entities responsible for power consumption, location, and the i13DM running profiling.

Furthermore, it also performs the first-time full-system analysis and submits it to i13DRP

through Communicator. DeviceManager consists of classes responsible for the general

behavior of the application and its interaction with the platform including classes for

managing the application’s settings, for reporting the application crashes and failures to

i13DRP, for auto-launching i13DM at start up finally classes for updating i13DM to the

latest version. Moreover, DRManager holds all the classes which are responsible for the

activities required during a DR event, for example, scheduling the event and controlling

the power consumption. Furthermore, i13DM takes advantages of a notification subsystem

for informing the user of laptops when changing the standard behavior of laptop. Finally,

i13DM is equipped with a relational database for storing records produced over the

lifecycle of i13DM.

As previously stated in 4, i13DRP relies on cooperations of multiple server-side

applications, however, to keep the diagram simple, we do not specify the borders

of each application in this picture. Also, subsystems of different application are

depicted together in one diagram. We will specify the order of applications more

clearly in section 5.4. As we stated the system requirements in detail in the previous

chapter, the main task the of i13DRP is managing the participating laptops and
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performing DR event. For this reason, we realize the subsystems of DRManager,

i13DMManager and i13DMProfiler. DRManager carries out the essential scheduling

operations in association with i13DMProfiler which is responsible for managing the

power consumption and location profiles collected from i13DM devices as well as caring

for the on-line status and activities of them. Moreover, i13DMManager provides the

administrator of i13DRP with essential operations for managing the registered laptops. In

addition to described subsystems, several other subsystems facilitate i13DRP operations

including CrashManager handling the reported i13DM crashes, i13DMUpdater and

DevOpsManager maintain building and releasing new versions of i13DM and i13DRP

and finally, AuthN/AuthZ which maintains the authentication/authorization and security

policies of i13DM and i13DRP. In the end, i13DRP is dependent on a storage subsystem

consisting of a file storage for maintaining power models and a real-time database for

storing DR related records.

Figure 5.1: Subsystem decomposition of i13DR
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i13DR Hardware Software Mapping

In the following section, we explain our approach toward mapping the realized subsystems

to different hardware and software components in a way that we satisfy the mentioned

functional and nonfunctional requirements as well as the design goals. Moreover, we

exploit UML deployment diagrams for simplifying the illustration. According to [40]

deployment diagrams demonstrate the relationship among run-time components of the

system. The components encapsulate the activities of subsystems and provide them as

services to other components. Figure 5.2 presents our approach toward separating our

subsystems and mapping them to appropriate devices and services. On the left side,

i13DM is installed and running on user’s laptops, and the right side, the activities of

i13DRP is distributed among multiple applications and physical devices. In the following

subsections, we discuss in detail how each subsystem is mapped and what technologies

and tools used for implementing the i13DR.

i13DM Implementation

According to chapter 4, i13DR is inherently a distributed system consisting of multiple

server-side applications and several participating laptops with i13DM installed. We design

and develop i13DM in a way that all required demand side components and subsystem

are encapsulated and packaged into one installable desktop application. In our work we

used Electron Framework 1 to develop a cross-platform desktop application for Microsoft

Windows 7,8 and 10 32/64-bit as well as Ubuntu 16.04 LTS 64 bit. Electron Framework

is a JavaScript based open-source framework meant for creating front and back end

components of a cross-platform desktop application. It makes use of Node.js2 for handling

the back end and Chromium web browser 3 for the front end. The main reason for selecting

this framework, in addition to being cross-platform, is taking advantage of event-driven

architecture and non-blocking asynchronous nature of Node.js, empowering us to develop

an application capable of real-time communication with other components.

To implement the realized functionalities of subsystems mentioned in 5.1, we implement

i13DM according to best practices of JavaScript, Node.js and Electron Framework.

However, we also make use of several built-in functionalities of Node.js and Electron

1https://electron.atom.io/
2https://nodejs.org/en/
3https://www.chromium.org/
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Framework as well as the Node.js packages provided by Node Package Manager (npm)4.

In the following paragraphs, we discuss how every subsystem and its corresponding classes

are mapped and implemented.

First, we review the subsystems and their classes which are implemented based on built-in

features of Electron framework or Node.js packages. We used several other packages.

However, we only include the most important ones:

• NotificationCenter : We use the built-in Notifications API of chromium to configure

and display notifications to user.

• RelationalDB : We employ Lovefield5, relational database built upon built-in

IndexedDB of Chromium to mimic SQL-like API.

• SettingsManager : It is heavily dependent on the npm package configstore6.

• CrashReporter and AutoUpdater : We make use of built-in features of Electron

framework for implementing crash reporting features.

• AutoStarter : This subsystem is based on npm package of auto-launch7.

• Communicator : i13DM either communicates with the real-time database through

npm package firebase8 or directly communicates with the i13DRP web applications

by means of built-in HTTP and HTTPS interfaces of Node.js.

The rest of the subsystems which we develop from scratch include:

• PowerController : We use the built-in power management features of the operating

system to limit the energy consumption of the laptop. The ideal would be

disconnecting the battery charger from the plug and only drain energy from the

battery. However, the OS does not provide any functionalities for this purpose.

Hence, we use the OS API to put the laptop on power save mode. On Windows

we rely on powercfg9 to import, activate and deactivate a Windows specific energy

save scheme which we previously generated and exported from a Windows machine

and we ship it with i13DM. On the other hand, Ubuntu is equipped with very few

built-in functionalities for controlling the power consumption. For this reason, to

save power, we only dim the screen though the built-in command xrandr or turn

the screen off when the laptop is idle.

4https://www.npmjs.com/
5https://github.com/google/lovefield
6https://github.com/yeoman/configstore
7https://github.com/Teamwork/node-auto-launch
8https://www.npmjs.com/package/firebase
9https://msdn.microsoft.com/en-us//library/hh824902.aspx
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• InitialAnalyzer : For implementing this subsystem we make use of built-in

functionalities of OS to extract the hardware and software specification. On

Windows, we are heavily dependent on Windows Management Instrumentation

(WMI)10 Commands to query the system specification. However, on Ubuntu we

rely on several commands, including but not limited to lshw, dmidecode, lshw, lspci

and lscpu to collected the necessary system specifications.

• DRScheduler : We develop this subsystem based on pure JavaScript to compare the

internal clock of the machine with a DR schedule earlier received from i13DRP.

Once the current time falls into any DR plans, it informs the PowerController to

activate the power control and afterward to deactivate when the DR event is over.

• LocationProfiler : This subsystem is a combination of JavaScript methods that we

develop to monitor the actual location of laptop every 90 seconds in cooperation

with Google Maps API 11, built-in Geolocation API of Chromium and FreeGeoIP
12 an open-source HTTP API for searching the geolocation of IP addresses which

we host on our servers.

• RunningProfiler : This subsystem is implemented based on pure JavaScript

performing the tasks responsible for profiling the i13DM.

• PowerProfiler : This subsystem runs in interval exploiting the built-in functionalities

of OS to extract the essential system utilities to be used with the deployed power

model. On Windows, similar to InitialAnalyzer, it uses WMI commands to query

the utilization metrics and on Ubuntu it executes multiple commands including by

not limited to upower, free, iostat and vmstat.

The source code of i13DM is open-source and publicly available at GitHub repositories13.

10https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx
11https://github.com/epezhman/demand-manager-app
12http://freegeoip.net
13https://github.com/epezhman/demand-manager-app
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Figure 5.2: Hardware/software mapping of i13DR
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i13DRP Implementation

According to requirements discussed in chapter 4, i13DRP comprises of several web-based

applications, and we emphasize on real-time communication and scalability as first-order

design constraints. As figure 5.1 and 5.2 illustrate, we implement and host some of the

subsystems independently on our servers and for the rest we use available services provided

by commercial platforms. First, we review the subsystems and classes which we deploy

on commercial platforms:

• DevOpsManager : The backbone of our DevOps infrastructure is Amazon Web

Services and Amazon S3 (Simple Storage Service) 14, a web service providing

storage. The very high availability, scalability, and low cost make Amazon S3 a

good choice for hosting and distributing the packaged i13DM. Furthermore, we

use Gulp.js15, an open-source JavaScript toolkit used as streaming build system,

and electron-builder 16, the de facto builder and packager for electron framework, to

automate the building, configuring, testing, packaging and releasing the i13DM to

Amazon S3.

• Storage: The main storage provider of i13DRP is Firebase17 providing us with

a real-time cloud-hosted NoSQL database for storing and retrieving the i13DM

and i13DRP data in JSON format. Additionally, Firebase offers a cloud storage

which we use for distributing the constructed power model files to i13DM in

real-time. The main reason for choosing this platform is the high scalability of the

offered services which are empowered by Google infrastructure to support multiple

thousands of simultaneous connections as well as appropriate prices, high security,

and availability.

• LocationProvider : We provide various options for detecting the location of i13DM

to be used as a back-up in the case of any provider’s failure. The main service we

use is Google Maps API 18.

In the following list, we explain all the subsystems and classes which we host on our

servers. We develop the necessary subsystems. However, we also make use of open-source

projects and tools when necessary:

• DRManager(Optimizer/Scheduler), i13DMProfiler(LocationProfiler/PowerProfiler)

14https://aws.amazon.com/s3/
15http://gulpjs.com/
16https://github.com/electron-userland/electron-builder
17https://firebase.google.com/
18https://developers.google.com/maps
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and i13DMManager : We develop a web application based on Meteor 19 and Angular

2+20 encapsulating and packaging the three subsystems. Meteor, an open-source

JavaScript web framework, makes real-time communication possible by utilizing

the Distributed Data Protocol (DDP)21 and publish-subscriber pattern to propagate

data changes. For this reason, we employ Meteor to develop the back-end of

i13DRP. However, Meteor does not provide adequate functionalities to develop the

front-end of i13DRP. Therefore, we use Angular 2+, an open-source TypeScript-based

front-end web application platform.

• i13DMUpdater : We develop a simple Express22, a Node.js web framework, to

propagate the latest version of i13DM to participants when a new version is available

at Amazon S3.

• CrashManager : Two different web applications are responsible for receiving

and maintaining crash reports and stack traces from i13DM. First, we use

mini-breakpad-server 23, a small crash collector server inspired by google-breakapd

and developed by Electron’s development team. The second crash manager

application is developed by us, based on Django Web Framewrok 24 to collect the

internal run-time exceptions sent by i13DM.

• AuthN/AuthZ : By using the measures and rules provided by Meteor and Firebase we

enforce authentication and authorization. We discuss this topic in detail in section

5.6.

• Homepage: We develop a static HTML page as a landing page for our project, where

a user can download i13DM as well as informing themselves about the project.

Moreover, the administrators of i13DRP can navigate to management areas. Our

homepage is accessible under http://i13dr.de/.

• Communicator : We serve ll the described subsystems and application by NGIX 25, a

high-performance HTTP and reverse proxy server, running on a Ubuntu 16.04 LTS.

In the end, the source code of the discussed open source project can be found under

the given links. Our implementations are open-source and freely available on ourGitHub

19https://www.meteor.com/
20https://angular.io/
21https://www.meteor.com/ddp
22http://expressjs.com/
23https://github.com/electron/mini-breakpad-server
24https://www.djangoproject.com/
25https://nginx.org/
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repositories for i13DRP Meteor/Angular application26, the crash collector27 and update

server28. Furthermore, we include a few snapshots of i13DM and i13DRP in the appendix.

Power Model Construction

In chapters 2 and 4, we discuss the purpose and requirements of a power model. In

our approach, we propose a modeling technique for generating a mathematical model

which estimates a laptop energy consumption in real-time according to the measured

system metrics. Once the model is created based on a System Under Test(SUT), it can

be deployed on participating laptops to be used for predicting the power consumption.

We need to create the following power models to estimate the power consumption

according to the operating system and power consumption mode:

• Microsoft Windows on normal power consumption mode

• Microsoft Windows on power save mode

• Ubuntu on normal power consumption mode

• Ubuntu on power save mode

In order to construct any of the power models we use the procedure illustrated in figure

5.3 consisting of six distinct phases. We perform the calculations by making use of R

Programming Language29 and R Studio30.

The first phase is collecting the necessary power related data required for training the

energy model of an operating system running on an SUT. Therefore, we make use of

Lenovo ThinkPad L540 31 with specifications described in Table 5.1. Furthermore, the

mentioned laptop is connected to MEDAL power meter which constantly measures and

stores real power, apparent power, power factor, voltage and current of the connected

device. Furthermore, we log the system metrics of the laptop with a one-second interval

on Ubuntu and a three-seconds interval on Windows. The logged system metrics include

CPU Utilization in percent, display brightness in percent, power drain of battery in Watts,

the charging/discharging status of laptop, the remaining capacity of battery in percent,

26https://github.com/epezhman/demand-manager-web-app-v-2
27https://github.com/epezhman/demand_manager_admin
28https://github.com/epezhman/demand-manager-update-server
29https://www.r-project.org/
30https://www.rstudio.com/
31https://www.notebookcheck.net/Review-Lenovo-ThinkPad-L540-20AV002YGE-Notebook.

113894.0.html
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Figure 5.3: Power model generation procedure

memory usage in percentage, disk read/write kb per seconds and request and network

download/upload rate in kb per seconds. We collect the data over a period of four days

for each OS and power consumption mode, while the user works with laptops performing

his common daily activities.

The next phase is preprocessing, cleaning and removing the outliers from raw data. We

consider the rows with measured real power below 8 watts and above 65 watts (the

maximum output of the used AC adapter of the SUT laptop) to be outliers because of

errors is measurement, and hence, we remove them from the dataset. Furthermore, we
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normalize the data types of features in the dataset as well as transforming the recorded

values of download/upload rate and disk read/write rate to values between 0 and 100.

Once the correction of raw data is finished, we save them to CSV files and use them later

for training the model.

For predicting the power consumption, we fit a linear regression model based on the

collected data. However, before training the model, for the purpose of improving the

accuracy and reducing the complexity of the constructed model, we examine the quality

of different combinations of features for selecting a subset of features for a more accurate

model. For this reason, we use package leaps32 to perform an exhaustive search to

determine the best subset of power-related features. Figur 5.4 illustrates the result of

an exhaustive search on all subsets of the regression model for the dataset collected

from Windows while in normal power consumption mode. leaps sorts the results by

Adjusted R-Squared and Bayesian Information Criterion (BIC)33 and examines them

for the five best models reported for each subset size (one feature, two features and so

on). The Adjusted R-Squared represent the proportion of variation in the measured power

consumption that has been explained by the model with taking the number of features

in the model into consideration. BIC measures the goodness of a model based on the

maximized value of a likelihood function. The higher the calculated value for Adjusted

R-squared, the better the constructed model whereas as the value of BIC decreases, the

model improves. According to the result of the evaluations, we select a subset of features

presented in Table 5.2 to be included in the final model. We include the plots for Windows

in power save mode, Ubuntu in normal power consumption mode and power save mode

in appendix due to lack of space.

Afterward, first, we use the selected features to fit a simple linear regression model by

using the lm method in R. Then we export the model to be deployed to i13DM. However,

before deployment, we evaluate their accuracy of constructed model which is explained in

detail in chapter 6.

The scripts for cleaning data, feature selections, fitting and evaluating models are available

at a GitHub repository under the following address, https://github.com/epezhman/

demand-manager-data.

32https://cran.r-project.org/web/packages/leaps/leaps.pdf
33http://r-statistics.co/Linear-Regression.html
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Vendor Lenovo

Version ThinkPad L540 (20AV002YGE)

CPU Intel - Core i5-4200M CPU @ 2.50GHz

Video Card Intel - 4th Gen Core Processor Integrated Graphics Controller

Memory 8GB SODIMM DDR3

Wireless interface Intel Wireless 7260

Storage Seagate - ATA HGST HTS725050A7

Battery Sanyo - 45N1769 -56160mWh

Operating System Ubuntu 16.04 LTS / Microsoft Windows 10

Table 5.1: Lenovo ThinkPad L540 specifications

Persistent Data Management

i13DR requires storing two sets of objects, one set for i13DM and the other for i13DRP.

According to our needs and resources available on each platform, we select different

approaches.

The persistent data on i13DM falls into two categories. The first group is the data

written and modified few times, but i13DM reads them several times over its lifetime.

i13DM stores this kind of data in configuration files provided by npm package configstore

and it consists of application settings, power model location on i13DRP, DR schedule

details and the power profiling interval in milliseconds. The second group contains

several rows of data which are required to be stored, queried, retrieved and updated

regularly. Because of this high interactions, we make use of a relational database. To

avoid adding extra dependencies, we install and use lovefield package for exploiting

the IndexedDB34 integrated with Chromium shipped with Electron framework. Lovefield

provides an SQL-like API to interact with NoSQL IndexedDB, mimicking the behavior of

a common relational database. Figure 5.6 shows, five tables we use for storing data. On

first-run, i13DM creates an initial power consumption and location profiles by populating

the tables PowerProfile and LocationProfile respectively. During execution of i13DM,

during each cycle of power consumption, location and running profiling, it adds a new

34https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
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Figure 5.4: All subsets regressions for Windows in normal power consumption mode

records to Power, Location and Running tables respectively and the corresponding records

are updated on tables PowerProfile and LocationProfile. According to our default settings,

data older than 30 days is deleted from Power, Location and Running but the data in

PowerProfile and LocationProfile remains on the system during the lifetime of i13DM.

Because of limitations of lovefield and performance issues we avoid using foreign keys to

keep our database design simple, however, we define indexes when necessary.

The requirements for i13DRP emphasizes on the necessity of using a real-time scalable

file storage and database for serving potentially a significant number of i13DM instances.
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OS Power Mode Selected Features

Windows Normal & Battery charging/discharging rate,

Power Save Battery charging/discharging rate squared,

Interaction of battery charging/discharging rate

with display brightness , Interaction of battery

charging/discharging rate with remaining capacity of battery,

Charging status, CPU usage, Memory usage,

Remaining capacity of battery, Download/upload rate in kb,

Disk read/write request per second

Ubuntu Normal & Battery charging/discharging rate,

Power Save Battery charging/discharging rate squared,

Interaction of battery charging/discharging

rate with remaining capacity of battery,

Charging status, CPU usage, Memory usage,

Remaining capacity of battery, Download/upload rate in kb,

Disk read/write request per second

Table 5.2: Selected power related features for power modeling

As a result, we choose Firebase to maintain our data. Firebase is a real-time cloud-hosted

NoSQL database storing data as JSON objects which we structure according to their

guidelines and best practices35. Figure 5.5 represents how we structure our data on the

JSON tree by flattening the data structure to increase the performance of Firebase and

to ensure the scalability. As figure 5.5 illustrates, all the children of the root node are

specifying the topic of the data they are containing as well as containing as many children

as the number of registered i13DM (here three laptops with three different IDs). The main

advantage of Firebase is i13DM can directly read from it and write data to it through

the available web API. The following list briefly explains the nature of the data stored in

each node:

35https://firebase.google.com/docs/database/web/structure-data
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• activity-status : We store the latest status of i13DMs under this node such as last

on-line time.

• device: This node is responsible for storing the detailed list of registered laptops

including the version of i13DM as well as the date of joining i13DR.

• hardware: The hardware specifications gathered during initial analysis are stored

under this node.

• last-location: i13DRP tracks the most recently determined location of i13DM to be

reported to the administrator.

• location: This node holds the location profiles sent by i13DM.

• logging : If the administrator decides on logging the laptop for generating the power

model, i13DRP stores the collected logs under this node.

• online: i13DRP maintains a list of currently on-line i13DM under this node.

• power : The power consumption profiles sent by i13DM is stored under this node.

• schedule-period : After DR optimization and scheduling, the generated schedule for

every i13DM is published under this node.

• settings : This node keeps the settings for every i13DM which can be modified by

the administrator.

• statistics : Firebase maintains the statistics of the stored data such as the number

of registered laptops.
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Figure 5.5: Data structure on Firebase
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Figure 5.6: Database diagram of i13DM
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Access Control

In general two kinds of human users interact with i13DR. On one side, the users of i13DM

who have the role of DR participants and on the other hand, there are administrators of

i13DR who directly interact with i13DR having an administrative role. DR Participants

must only have access to the information directly related to their device and not any

other DR participants, whereas, the administrators have access to the entire data on

i13DR infrastructure. Therefore, we implement a number of security measures to ensure

granting correct access rights to the user.

The administrators of i13DRP first must be approved by one of the previously approved

administrators. Afterward, to access the front-end of i13DRP and then the data stored

on Firebase, first, they should login by using the built-in authentication functionalities

of Meteor framework and then authenticate themselves with authentication providers of

Firebase.

Because of direct interaction of i13DM with Firebase, our approach for implementing

the security measures of DR participants heavily depends on Firebase user-based

security integrated with Firebase authentication providers. To ensure the anonymity

of our DR participants, we do not request any private information such as names and

emails. However, we employ a Firebase authentication capability known as Anonymous

Authentication36 to create temporary anonymous accounts allowing users to have access

to protected data. Moreover, we use Firebase Realtime Database Rules37 to protect i13DM

data and determine to what extent users have access to the data. We specify that only

anonymously authenticated i13DMs have read and write access to the power consumption

and location profile, logs, and first analysis records and only read access to the published

power models and DR schedules.

Finally, we make use of secure connections to transfer most of the i13DR data, including

all the interactions with real-time database and cloud-based file storage. To guarantee the

security of our servers running the i13DRP, we make use of Firewalls as well as secure

SSH connections. Furthermore, we assure that all of the running platforms are updated

to the latest version, and we follow the recommended security guidelines of all employed

programs and frameworks.

36https://firebase.google.com/docs/auth/web/anonymous-auth
37https://firebase.google.com/docs/database/security/
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Boundary Conditions

In the last section, we review our approach for handling i13DR boundary conditions, such

as installing i13DM, starting and stopping i13DM and i13DRP applications as well as

handling their run-time exceptions and system failures.

As mentioned in 5.1, we create a homepage for accessing information on the i13DR

project as well as downloading the installable version of i13DM which is available at

this address: http://i13dr.de/. After, downloading the platform compatible version

of i13DM, either Windows 32/64-bit or Ubuntu 64-bit, DR participants can install and

launch the i13DM in a similar way to any other software. Furthermore, DR members

can stop the execution of i13DM from the application’s tray icon from system tray. The

exceptions, caused by system failure, software fault, network failure, etc. are handled

gracefully in the background, and the user is informed with notification only if the failure

affects the normal behavior of the system. In any case, a report of the exception is sent

to i13DRP to be reviewed and processed by administrators.

i13DRP consists of multiple web based application which either is developed by us and

is running on i13DR’s private servers or is being offered by third-party web services.

Therefore, we only need to pay attention to the execution and availability of services

hosted by us. Depending on the application and its architecture and requirements we

use a variety of tools and techniques for setting them up and monitoring them. For

deploying, starting up and running our i13DRP Meteor/Angular app we use Meteor Up38

a tool powered by Docker 39, a software container platform. Furthermore, we use PM2 40,

a Node.js process manager, to manage our Node.js based applications including stack

trace collector, i13DM update server and the homepage. Finally, The Django-based crash

collector is served by uWSGI 41, an application container server. We should mention that

we configure the employed platforms and services to restart automatically in a case of

system failures and crashes.

38https://github.com/zodern/meteor-up
39https://www.docker.com/
40http://pm2.keymetrics.io/
41https://uwsgi-docs.readthedocs.io/en/latest/



Chapter 6

Evaluation

As discussed in the previous chapters, the primary focus of the thesis is implementing

a real-time scalable DR infrastructure for laptops based on combining two lines of

research. On the one hand, we make use of studies on creating effective DR infrastructure,

on the other side, with the help of previous works on energy consumption modeling,

we construct mathematical models to measure the power consumption of laptops in

real-time. Therefore, in the following chapter, we evaluate the performance and accuracy

of the developed i13DR framework and constructed power models. First, we explain the

methodologies we use for evaluating energy models followed by an experiment we design

for quantifying the abilities of i13DR infrastructure. Then, we describe the objectives

and hypotheses we expect to realize followed by presenting the results gathered from the

experiments. Afterward, we interpret the findings and discuss them in details. Finally, we

mention the difficulties we faced while conducting the tests.

Power Models Evaluation

In chapter 5, we explain the procedure for fitting four different linear regression models for

estimating real power consumption based on operating systems and energy consumption

modes. Before training the model with four different collected datasets, first, we split

each dataset into two smaller ones, with one holding 80 percent of the data used for

fitting the model and the other 20 percent of the data meant for testing the accuracy

of the model for predicting out-of-sample values. Table 6.1 summarizes the evaluation

results based on different metrics including p-Value of the constructed model, Adjusted

R-Squared of constructed models, MAPE in percentage, Min/Max Accuracy in percentage

66
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and Correlation Accuracy between the actual and predicted values. P-Value and Adjusted

R-Squared are reported by R after fitting the model. P-Value points out the statistical

significance of the models, and because the p-Values of all four models are less than

the pre-determined statistical significance (0.05), we can verify that all the constructed

models are statistically significant. Furthermore, the Adjusted R-Squared1 represent the

proportion of variation in the measured real power that is explained by the model with

taking the number of features in the model into consideration and higher Adjusted

R-Squared implies a better model. The other metric, Mean Absolute Percentage Error

(MAPE), which is defined as 6.2, measures the prediction error, and as its value decreases

the quality of model increases. Furthermore, Min/Max Accuracy is defined as 6.1 and

it measures how far the model prediction is from the actual real powers. The better

the quality of regression model is, the higher the Min/Max Accuracy will be. Finally,

Correlation Accuracy is a simple correlation between predicted and actual real powers

and as the correlation among the values increases, it indicates both values have similar

directional moves. We also include a more detailed summary of all models, created by

summery() method of R in the appendix.

According to our evaluation results, all the generated models have relatively good accuracy

for the purpose of our thesis. However, the power models constructed for Ubuntu on

normal power consumption mode and power save mode have the highest accuracy; in

comparison, models for Windows have relativity lower accuracy. The main reason for this

variation is the different sampling rate we use on Windows in compare to Ubuntu which is

respectively 3 seconds and 1 second. We choose 3 seconds sampling frequency on Windows

because WMI is rather slow in updating utilization metrics and any faster sampling would

cause in incorrect values with too much overhead on the performance of the laptop.

MinMaxAccuracy = mean

(
min(actualRealPowers, predictedRealPowers)

max(actualRealPowers, predictedRealPowers)

)
(6.1)

MAPE = mean

(
abs(predictedRealPowers− actualRealPowers)

actualRealPowers

)
(6.2)

Finally, we perform 5-folds cross-validations on all four models. Figure 6.1 illustrates all

the resulting cross-validations side by side executed by package DAAG2 of R, where

1http://r-statistics.co/Linear-Regression.html
2https://cran.r-project.org/web/packages/DAAG/index.html
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Model Power Mode p-Value Adj R-sqr MAPE (%) Min/Max ACC(%) Correlation ACC

Ubuntu Save <2.2e-16 0.968 5 95 0.984

Ubuntu Normal <2.2e-16 0.9065 8 93 0.954

Windows Save <2.2e-16 0.8248 18 85 0.914

Windows Normal <2.2e-16 0.5223 19 85 0.713

Table 6.1: Power model evaluation results

the small symbols are predicted real powers and bigger ones are actual real powers.

Additionally, table 6.2 represents the average squared errors of five folds. According to

the plots, we verify that model’s prediction accuracies are approximately uniform among

different samples, and the slopes and level of fitted lines have relatively low variations.

Model Power Mode Mean Squared Error

Ubuntu Save 8.15

Ubuntu Normal 33.44

Windows Save 21.61

Windows Normal 53.97

Table 6.2: Power models cross-validations mean squared error

i13DR Evaluation Overview

We design a comprehensive experiment, consisting of two parts, to evaluate the

performance and effectiveness of i13DR infrastructure with a focus on real-time responses

and its abilities to control the power consumptions of laptops. The first part of

the experiment is designed to estimate the i13DM capability in reducing the power

consumption of the laptop while connected to the electricity grid using AC adapter.

For the second part of the experiment, for the purpose of investigating the effect of DR

schedule on demand load, we perform a demo scenario of a DR event with a number of

laptops located at the i13 - the Chair for Application and Middleware Systems of Technical

University of Munich’s Department of Informatics.
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Figure 6.1: Power models cross-validations

Power Control Approach Evaluation

In chapter 5, we explain that i13DM utilizes built-in energy management features of OS

to control the power consumptions of laptops. To determine the impacts of i13DM’s power

control techniques on demand load curtailment, we execute various workload on different

platforms on different power consumption modes.
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Power Control Evaluation Methodology

We use two workload generator applications to stress various components of a Lenovo

ThinkPad L540 laptop used as a testbed with specifications described at 5.1 with a

Windows 10 and Ubuntu 16.04 installed side by side. To eliminate the impact of battery

charging on the demand load, we execute all the workloads on the fully charged laptop.

We execute five minutes long workload on both platform, three times while the laptop

is running on normal power consumption mode and three times while running on power

save mode which i13DM previously activated. During execution of workloads we monitor

and record the real power consumption in watts and consumed energy in kWh through a

connected ZigBee Smart Energy Meter 3.

On Ubuntu, we use stress4 to create 5 minutes long workload spawning three workers to

stress three out of four cores of CPU by executing sqrt(), spawning two workers spinning

on sync() stressing IO, spawning two workers spinning on write()/unlink() with 1 GB files

stressing disk and finally, spawning two workers performing malloc()/free() for stressing

the memory. For generating workload on Windows, we make use of HeavyLoad v3.4 5 to

generate 5 minutes long workload for stressing various components. HeavyLoad stresses all

cores of CPU to the maximum by performing complex calculations, it contentiously writes

large files on disk, allocates memory and stresses GPU by manipulating a 3D rendered

graphic.

Workload Execution Results

Table 6.3 and 6.4 summarizes the workload execution results on Windows and Ubuntu

respectively where Mean Power reports the arithmetic mean of sampled real power

consumption in watts and Consumed Energy is the amount of electricity consumed over

the period of workload execution. Moreover, both tables include the arithmetic mean of

three sampled power and energy consumptions.

Finally, table 6.5 illustrates the percentage decrease of average real power and accumulated

consumed energy when switching from normal power consumption mode to power save

mode on Windows and Ubuntu. The power drop and energy drop values are calculated

according to equations 6.3 and 6.4 from values presented in tables 6.3 and 6.4.

3http://www.didactum-security.com/en/zigbee-wireless-monitoring/

zigbee-voltage-monitoring/zigbee-smart-energy-meter-zbs-110-v2.html
4http://manpages.ubuntu.com/manpages/zesty/man1/stress.1.html
5http://www.jam-software.com/heavyload
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PowerDrop =

(
AveragePowerOnNormalMode− AveragePowerOnSaveMode

AveragePowerOnNormalMode

)
∗100

(6.3)

EnergyDrop =

(
AverageEnergyOnNormalMode− AverageEnergyOnSaveMode

AverageEnergyOnNormalMode

)
∗100

(6.4)

Power Mode Sample Mean Power (watts) Consumed Energy (kWh)

1 40.28 0.003

Normal 2 38.72 0.004

3 37.66 0.004

Average Normal 38.89 0.0037

1 28.58 0.003

Save 2 28.81 0.003

3 28.40 0.002

Average Save 28.60 0.0027

Table 6.3: Power and energy consumption benchmark on Windows

Findings

As represented in table 6.5, i13DM is capable of decreasing the power consumption on

Windows up to 26.64 percents and up to 6.95 percent on Ubuntu. The main reason

for such a significantly better performance is the availability of more extensive built-in

energy management features on Windows in comparison with Ubuntu which we explained

in chapter 5.

Although the drop in real power consumption on Windows is much noticeable than

Ubuntu, the reduction in total consumed energy is relatively in the same range for

Windows and Ubuntu with 27.27 percents and 22.22 percent respectively. We believe
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Power Mode Sample Mean Power (watts) Consumed Energy (kWh)

1 35.26 0.003

Normal 2 33.27 0.003

3 33.98 0.003

Average Normal 34.17 0.003

1 31.93 0.003

Save 2 30.29 0.002

3 33.17 0.002

Average Save 31.80 0.0023

Table 6.4: Power and energy consumption benchmark on Ubuntu

OS Power Drop (%) Energy Drop (%)

Windows 26.46 27.27

Ubuntu 6.95 22.22

Table 6.5: Mean drop on power and energy consumption

the low accuracy of the measurement device and rather limited consumption of laptop

over the short period of sampling is causing the low variation of both values. For this

reason, we argue that the percentage drop in the power consumption is a better indicator

of i13DM’s ability for controlling electrical energy consumption of laptops.

DR Event Scheduling Scenario

To investigate the effectiveness and measure the performance of i13DR infrastructure,

we design a scheduling scenario for performing an experimental demonstration of a DR

event. For the purpose of this experiment, we develop a scheduling mock-up component

for i13DRP where the administrator can schedule and manage multiple DR events as well

as monitoring the participating laptops as they are joining and leaving the DR events.

Because i13DR is not connected to any RES supplies while performing the experiments,
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the mock-up component copies the behavior of a wind turbine integrated with the local

power grid. Table 6.6 describes the scenario we develop for scheduling a DR event

initiated by an administrator. For planning a DR event, the administrator first requires

determining the location of the wind turbine. Afterward, for the sake of simplicity during

the experiment, we presume that the wind turbine supplies every laptop located within a

1000 meters radius; consequently, when the production of turbine decreases, the demand

load of laptops needs to decrease simultaneously.

Experimental Setup

We conducted the described DR scheduling scenario on three laptops running at the Chair

for Application and Middleware Systems of Technical University of Munich’s Department

of Informatics with the hardware specification listed in table 6.8. All the participating

laptops are fully charged and are connected to MEDAL power meters which monitor and

records the power consumption during the experiments. We conducted the experiments

five times according to the described scenario with a different number of participating

laptops and DR event durations as stated in the table 6.7.

Figure 6.2 shows a snapshot of the mock-up component during execution of a DR event,

where on the left side, the administrator provides the i13DRP with the location of the

wind turbine and further required inputs. On the right side, he inspects several details

regarding the progress of experiment including the exact time when scheduling started and

finished. Also, he can observe the time all the participating laptops joined, an estimate of

the amount of power saved by activating the power control on laptops. Finally, the panel

also shows a list of laptops which were selected as candidates and received the new DR

schedule as well as the exact time they joined the DR event.

Experiment Objectives and Evaluation Methodology

The main objective of this thesis is developing an effective real-time DR system with a

significant impact on the real power consumption of laptops. As a result, the objectives of

our experiments are proving the two claims that, first, our design is capable of real-time

response to immediate changes of RES supply, second, with regard to the number of

participating laptops and their power profiles we can significantly reduce the demand

load of laptops.

In more details, to evaluate how our design responses to the immediate fluctuating changes
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Scenario name DR schedule demonstration

Participating actor instances i13DRP Administrator

A number of laptops at i13 chair

The flow of events 1. The administrator of i1DRP navigates to scheduling
mock-up page. From there, he chooses the location of
the wind turbine on the provided map, thereby selecting
the longitude and latitude of the wind turbine site.
Afterward, he specifies the possible reduction of wind
turbine’s electrical output in watts. The administrator
is also required to provide the length of DR event in
minutes. He also has the option to either start the DR
event immediately or provide the start time at when the
event begins. Once he provides all the required inputs,
he hits the button to start scheduling for a DR event.

2. I13DRP starts the scheduling procedure, once it
receives the DR event request. First, it queries all the
currently online laptops to find the ones located within
a 1000 meters radius of the provided location of the
wind turbine. Next, for each retrieved laptop, it fetches
the power consumption profiles from 20 minutes before
the start time of DR event up to the start time. Then,
it accumulates the reported difference of real power
consumption in normal power mode and power save
mode to have an estimate of the amount of energy
one certain laptop can contribute to energy reduction.
Finally, i13DRP creates a schedule with the provided
start time, or if the start time is not specified, it
schedules an event which immediately begins and lasts
as defined by the administrator. When all the schedules
are created, it submits them to Firebase, so the selected
i13DM can download them. (To be continued)

Table 6.6: DR schedule experimental demonstration

of RES supply, for each experiment, we measure how long it takes from the moment a

scheduling request for a DR event is initiated till the moment the schedule is published

to Firebase. Furthermore, we measure the amount of time from the moment a schedule

is published till the moment all participating laptops have received the schedules and

activated the power control. Afterward, we show that our system performs both tasks
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3. i13DMs are immediately notified of the new DR event through the bidirectional
real-time connection to Firebase. Afterward, they fetch the new schedule and activate
and deactivate the power control according to the new timetable. Moreover, they send
a status code to Firebase announcing that they either joined or left the DR event.

4. while the experiment and DR events are carried out. the administrator observes
the statistics of the experiment reported by i13DRP.

Table 6.6: DR schedule experimental demonstration

Laptop Vendor OS CPU RAM Screen size Max AC Adapter Output

Laptop 1 Lenovo ThinkPad L540 Windows 10 Intel Core i5 8 GB 15.6 inch 65 W

Laptop 2 Lenovo ThinkPad X230 Ubuntu 16.04 Intel Core i5 16 GB 12.5 inch 170 W

Laptop 3 Apple MacBook Pro Windows 10 Intel Core i7 16 GB 15 inch 85 W

Table 6.7: Hardware specification of participating laptops

Index Number of Participating Laptops Length of DR Event (inutes)

1 3 10

2 3 10

3 3 5

4 3 5

5 3 5

Table 6.8: Experiments’ details

within a specific time bound which in our case is one second. We also present that how

the response time changes for a different number of participating laptops.

For evaluating the total impact of participating laptops on curtailing the demand load,

we obtain the estimated demand reduction according to the laptops’ power profiles. After

that, we compare the calculated estimates with the real power reduction, provided by the

readings of MEDAL power meter. Finally, we investigate the accuracy of our estimation.
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Figure 6.2: DR event scheduler mock-up

Results

As stated, we conducted five experiments, initiating five different DR events. Each time we

measure a number of metrics required for evaluating the effectiveness and performance of

i13DR infrastructure. Table 6.9 and 6.10 summarize the estimated demand load reduction

in watts according to the laptops’ power profiles as well as the observed reduction

measured by MEDAL power meters. To measure the amount of load reduction, we

calculated the arithmetic mean and median of the measured power consumption for

three minutes before and three minutes after the activation of power control. The reason

for including the measured median power consumption, besides the measured mean, is

reducing the effect of outliers. However, based on the results, the difference between

median and arithmetic mean is negligible.

Moreover, table 6.11 illustrates, two columns of time measurements. First, the amount of

time it takes from the moment i13DRP receives a scheduling request from administrator

till the point all the candidate laptops are selected and the schedules are created and

published to Firebase. Second, it shows the period from the moment that all schedules

are posted to the Firebase till the point all participating laptops have downloaded and

activated the power control mode.

Finally, figures 6.3, 6.4 and 6.5 illustrates the demand load plots for the participating

laptops during the execution of each experiment, where the dotted line represent the



CHAPTER 6. EVALUATION 77

Index Estimated Reduction (watts) Mean Measured Reduction (watts) Mean Measured Reduction (%))

1 9.48 9.75 8.9

2 8.41 22.21 24.7

3 9.75 15.35 18.5

4 10.04 8.50 10.8

5 6.93 15.34 26

Average 8.92 14.23 17.80

Table 6.9: Summary of experiments’ mean real power reductions

Index Estimated Reduction (watts) Median Measured Reduction (watts) Median Measured Reduction (%))

1 9.48 9.22 8.5

2 8.41 21.37 23.7

3 9.75 14.80 18

4 10.04 9.28 11.8

5 6.93 15.21 26

Average 8.92 13.98 17.61

Table 6.10: Summary of experiments’ median real power reductions

Index Duration of Scheduling (ms) Length of All Laptops Participation (ms) Total Time (ms)

1 654 103 757

2 529 181 710

3 726 217 943

4 682 184 866

5 698 135 833

Average 658 164 822

Table 6.11: Summary of experiments’ scheduling operation’s length

moment power control is activated. Every plot includes the demand load of every laptop

separately, named as Laptop 1, Laptop 2 and Laptop 3 as well as the accumulated demand

loads of all laptops, called as All. Each plot demonstrates the demand load for ten minutes

before and after the activation of power control independent of the length of DR event.
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(a) First DR event (b) Second DR event

Figure 6.3: Demand loads of first and second DR events

(a) Third DR event (b) Fourth DR event

Figure 6.4: Demand loads of third and fourth DR events

Findings

Based on the presented results, we verify that i13DR is capable of reducing the real

power consumption of a group of laptops in a matter of milliseconds. Furthermore,

table 6.12 summarizes the accuracy levels of the estimated demand reduction against

the arithmetic mean and median of measured power consumption reduction, which we

calculated according to the 6.2 and 6.1 equations. In general, we estimated an 8.92 watts

demand reduction, and we measured a 14.23 and a 13.98 watts according to mean and

median of power meter readings, indicating the effectiveness of our design. However, the
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(a) Fifth DR events

Figure 6.5: Demand loads of fifth DR event

accuracy of our predictions is relatively low which we discuss the reasons in next section.

Min/Max Accuracy (%) MAPE (%)

Arithmetic Mean 66 72

Median 68 67

Table 6.12: Demand cut’s estimation accuracy

According to the measured time in table 6.11, we observe that i13DR is capable of

selecting the participating laptops, scheduling a DR event and activating the power

control in less than a second. The average amount of time required for selecting candidate

laptops, estimating their offered demand reduction and finally creating and publishing

DR schedules is 658 milliseconds. On the other side, the average amount of time required

for all the participating i13DMs to activate power controls and join the DR event is 164

milliseconds, pointing out that time required for creating a DR schedule is significantly

larger than the necessary time for laptops to join a DR event.

An interesting side effect of power control activation is the brightness reduction of

any connected stand-alone screens which subsequently reduces the demand load on the

electricity grid. However, since investigating the power consumption of such components

are not the focus of this thesis we do not include the results here.
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Discussion

Our findings show that the designed i13DR is capable of successfully scheduling and

performing a DR event targeting a group of laptops. However, they also highlight some

remarks and potentials pitfalls of our design which we are explaining in the following

section.

Although, on the average, the measured demand load reduction exceeds the estimated

reduction, the accuracy of our estimation is rather low with 66 percent and 68 percent

against the arithmetic mean and median of the measured power respectively. The main

reason for this rather low accuracy is the low accuracy of deployed energy models used for

creating the power consumption profiles. All participating laptops make use of identical

power models for estimating the power consumption, which is fitted based on the data

collected from a specific laptop (Laptop 1). Even though the power model yields relatively

high accuracy for predicting real power consumption on Laptop 1, it fails to measure

the power on other laptops accurately. Therefore, we conclude that it is significantly

important to take different hardware specification into consideration when fitting the

energy consumption models. We ignore this factor in our design because of the reason

that it requires additional measurement devices installed on the demand side for collecting

necessary data for constructing highly accurate models. These devices are a financial

burden for demand side participates. Therefore and because one of our primary objectives

is zero initial costs for participants, we sacrifice the accuracy for the sake of reaching our

financial goals.

As described in section 6.3, the used power control techniques, offer 26.46 percent and

6.95 percent reduction on Windows and Ubuntu respectively according to the workloads

we executed on the testbed laptop. For this reason and because we used two Windows

laptops and one Ubuntu laptop during the experiments, we expect to observe a 19.96

percent reduction on average which we calculate according to the arithmetic mean of two

instances of 26.46 percent reduction and one instance of 6.96 percent reduction. However,

we observe a 17.80 percent and a 17.61 percent reduction according to the arithmetic

mean of measured power consumption reductions, indicating roughly 89 percent accurate

estimate of the effectiveness of energy control approaches.

During the experiments, we observe that i13DR is capable of fast responses to the

immediate changes of RES with an average delay of 822 milliseconds from the moment a

DR event is requested till the moment all participating laptops joined the DR event.

The results also imply that i13DR significantly spends more time on selecting the

participating laptops and scheduling the DR events than bringing all the laptops to the
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DR event. The main cause for this is the quality of the mock-up component we develop

for this experiments. The mock-ups are created with AngularJS and are executed on

administrator’s Google Chrome web browser. Therefore, the performance is limited to

administrator’s laptop’s resources (Laptop 1) as well as the native applications running

on administrator’s laptops besides the web browser. However, we did not execute any

performance heavy applications during the experiments. Finally, we suggest developing

the scheduling components as a server application which can offer to schedule a DR event

as a service to the administrator.

Limitations

In general, according to our evaluations, i13DR is arguably capable of performing effective

DR events. However, since one of our primary objectives is eliminating the initial

cost for demand side participants, we depend heavily on a pure software approach for

implementing all required demand side functionalities. As a result, our design yields low

estimation accuracy and subsequently, low reliability, highlighting the trade-off between

cost and precision, where decreasing initial cost reduces the accuracy.

Finally, we notice that the amount of energy reduction that laptops can contribute to

the power grids using operating systems’ built-in power management features is relatively

low. For that reason, trying to compensate for a substantial loss of RES supplies, solely

based on a limited number of participating laptops may not be feasible.
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Summary

In the previous chapters, we extensively described and discussed our approach to a

Demand Response Infrastructure targeting laptops. In the following chapter, we present

the final remarks of our work. First, we mention the status of the thesis including the

realized goals of the i13DR as well as the open goals which the system have not reached

over the course of this thesis. Then, we present a final overview and concluding remarks

of i13DR and finally, we provide and outlook about the future work.

Status

Over the course of this thesis, we successfully designed and implemented most of the

realized requirements described in chapter 4. i13DR, consisting of two main components

of i13DM and i13DRP, effectively organizes a DR event for a number of laptops in response

to immediate changes of RES supply to curtail the demand load of participating laptops.

On the DR provider side of the system, i13DRP successfully maintains the registered

laptops, their power consumption, and location profiles. However, it lacks a proper

scheduling component for creating DR events based on the optimization techniques meant

for minimizing the energy consumption on the demand side. For the sake of demonstration,

we created a mockup scheduling component which performs simple scheduling tasks based

on the current location of currently online laptops as well as some parts of power profiles,

without taking the extensive amount of information we gathered in location and energy

consumption profiles into consideration.

On the other hand, i13DR successfully performs the essential activities for executing

82
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effective DR events, such as monitoring the actual power consumption, power control

techniques and communicating with i13DRP via real-time connections. Furthermore, it

performs the specified location and energy consumption profiling based on the deployed

power models as described in our requirements analysis. It also executes the activities for

maintaining the health and life cycle of the application such as automatic updates and

system crash reports. However, the main flaw of i13DM is the low accuracy of real-time

power consumption due to the low accuracy of deployed models.

In summary, we verify the design and implementation of the i13DR infrastructure to be

effective. Our approach addresses several concerns about responsively, scalability, security,

and affordability, despite the rather low accuracy and reliability due to the pure software

approach of our design. However, we argue that low accuracy is the trade-off between

eliminating the demand side costs and reliability, and because lowering the initial cost is

a primary constraint for us, we trade the accuracy for dropping the costs.

Conclusion

In this thesis, we presented a novel approach to design and implementation of a

Demand Response Infrastructure for laptops based on combining two lines of research on

existing DR infrastructures and high-level software-oriented power consumption modeling

techniques. Furthermore, in chapter 2 we explained the tools and technologies required

for understating the flow of the thesis including the concept of Demand Response and

its essential components as well as the goals and techniques of constructing and utilizing

power consumption models. Afterward, in chapter 3, we reviewed the previous studies

in the area of DR and energy modeling, emphasizing on our scientific contributions

and their contrast to the existing work. We also extensively discussed the functional

and nonfunctional requirements and expected use cases of our design. We explained

that we treat initial cost reduction of the demand side consumers as a first order

requirement and we facilitated integrating fluctuating RES supplies to the power grid.

Furthermore, we addressed several issues raised from designing such a complex system

including but not limited to reliability, responsively, and security. Finally, we described

the ways we decompose i13DR into smaller subsystems and components which are more

understandable and easier to implement. Moreover, we introduced the technologies and

frameworks used for implementing i13DR.

Finally, to evaluate the effectiveness and performance of i13DR, we conducted a number of

experiments, and we evaluated the resulting empirical measurements which we discussed
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in chapter 6. We verified that the constructed power models predict the current energy

consumption in real-time with accuracy up to 95 percents on Ubuntu and 85 percent on

Windows. Furthermore, we observe that i13DR is able of performing effective DR events

in real-time with minimal delay. However, the accuracy of our estimation of demand load

reduction is about 67 percents indicating rather low reliability. The main reason for the

low accuracy is our pure software approach which sacrifices high accuracy for the sake of

eliminating initial DR costs.

Future Work

Over the course of this thesis, we realized a few areas remained out of our reach, which

we offer here as parts of our future work. First, a large number of laptops are running on

MacOS, and i13DM is not compatible with this platform. Therefore, to extend the reach

of i13DR to all sort of participants, we suggest developing a new version of the i13DM

executable on MacOS. The cross-platform Electron framework that we use for developing

i13DM is capable of building and packaging MacOS ready applications. However, further

research on power monitoring and controlling on MacOS needs to be done.

Moreover, we suggest performing improvement and optimization on some aspects of our

design, including power modeling techniques, energy consumption control methods and

DR event scheduling and optimization approaches. Our approach toward energy modeling

is solely based on linear regression techniques. However, there are several other machine

learning approaches which worth further studies, such as k-nearest neighbors algorithm.

Furthermore, we require to implement a production-ready scheduler and optimizer for

minimizing the electrical load consumption on i13DRP, preferably based on optimization

algorithms such as Mixed Integer Linear Programming, Convex Optimization Problem

and Particle Swarm Optimization. Finally, as previously described, our power control

approaches heavily depend on built-in power management features of the operating

system. Although Windows offers extensive features in that regard, Ubuntu suffers from

insufficient power management options. Therefore, we suggest investigating further on

different techniques for managing power consumption on Ubuntu.
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Appendix

Snapshots of i13DR

Figure A.1: A snapshot of i13DRP administrator panel with power profile of one laptop
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Figure A.2: A snapshot of i13DM’s settings window on Ubuntu

Figure A.3: A snapshot of i13DM’s status window on Windows
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All Subsets Regressions of Power-related Data

Figure A.4: All subsets regressions for Windows in normal power mode
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Figure A.5: All subsets regressions for Windows in power save mode
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Figure A.6: All subsets regressions for Ubuntu in normal power mode



APPENDIX A. APPENDIX 91

Figure A.7: All subsets regressions for Ubuntu in power save mode



APPENDIX A. APPENDIX 92

Power Models Summary

Figure A.8: Summary of power model for Windows on normal power mode

Figure A.9: Summary of power model for Windows on power save mode
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Figure A.10: Summary of power model for Ubuntu on normal power mode

Figure A.11: Summary of power model for Ubuntu on power save mode
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