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Abstract
With the increased adaption of blockchain technologies, permis-
sioned blockchains such as Hyperledger Fabric provide a robust
ecosystem for developing production-grade decentralized appli-
cations. However, the additional latency between executing and
committing transactions, due to Fabric’s three-phase transaction
lifecycle of Execute-Order-Validate (EOV), is a potential scalability
bottleneck. The added latency increases the probability of concur-
rent updates on the same keys by different transactions, leading to
transaction failures caused by Fabric’s concurrency control mecha-
nism. The transaction failures increase the application development
complexity and decrease Fabric’s throughput. Conflict-free Repli-
cated Datatypes (CRDTs) provide a solution for merging and resolv-
ing conflicts in the presence of concurrent updates. In this work,
we introduce FabricCRDT, an approach for integrating CRDTs to
Fabric. Our evaluations show that in general, FabricCRDT offers
higher throughput of successful transactions than Fabric, while
successfully committing and merging all conflicting transactions
without any failures.

CCSConcepts •Computer systems organization→Distributed
architectures.
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1 Introduction
Since the introduction of Bitcoin [26], new blockchains have been
developed that provide their users with novel ways of storing and
validating transactions and data in a trustless environment [9, 17].
However, a large number of existing blockchains fall significantly
behind existing distributed databases concerning scalability and
throughput [39]. This limitation is touted as a fundamental cost for
providing security and trust in a decentralized and trustless environ-
ment. Unfortunately, the significantly lower transaction throughput
of blockchains such as Bitcoin and Ethereum [9] has been a severe
obstacle to thewidespread adoption of these technologies. Although
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there have been several scalability approaches introduced [22], the
public and permissionless nature of these blockchains make it diffi-
cult to find a good solution [13].

For use cases where the identity of users and nodes are known,
when developing decentralized enterprise applications, permis-
sioned blockchains constitute a viable alternative. One of the most
prominent permissioned blockchains is Hyperledger Fabric [3],
which offers significantly higher throughput and transactional guar-
antees in comparison to Bitcoin and Ethereum while allowing the
deployment of Turing complete applications [37]. Fabric follows
a three-phase Execute-Order-Validate (EOV) lifecycle for trans-
actions. To ensure the consistency of the ledger, Fabric uses an
optimistic concurrency control mechanism that enables concur-
rent updates. This mechanism is similar to the technique used by
several database systems for increasing scalability and through-
put [14, 32, 35]. Although the concurrency control mechanism is
necessary for ensuring the consistency of the ledger, it constitutes
a scalability bottleneck for Fabric. The added latency between
executing and committing a transaction in Fabric is on the or-
der of hundreds of milliseconds to seconds, which is significantly
higher than the latency for committing transactions in conventional
databases.

The considerable latency between the start (execution) and end
(commit) of a transaction increases the probability of the concurrent
arrival and execution of conflicting transactions, which can result
in the failure of a large portion of transactions in the network [34].
Once a transaction fails, the only option for clients is to create a
new transaction and resubmit, which adds to the complexity of
Fabric application development. Therefore, providing a solution
that enables Fabric to manage the conflicting transactions inter-
nally without rejecting the transactions can significantly improve
the throughput of Fabric and simplify the application development
process.

Conflict-free Replicated Datatypes (CRDTs) [33] address a sim-
ilar concurrent update problem among node replicas. For certain
update scenarios, CRDTs provide solutions for merging conflict-
ing values internally and resolving update conflicts automatically.
CRDTs are abstract datatypes that allow node replicas to eventu-
ally converge to a consistent state without losing updates. CRDTs
have been implemented in several production-grade databases such
as Redis [40] and Riak [8] and have established themselves as a
viable solution in practice [29]. In this work, we introduce Fab-
ricCRDT, an extension of Fabric with CRDTs, and we assess the
improvements CRDTs introduce to permissioned blockchains.

In doing so, we offer the following contributions in this work:

1. We investigate the applicability of CRDTs to permissioned
blockchains and propose a novel approach for integrating
CRDTs with Fabric that automatically resolves transaction
conflicts without the loss of updates.
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2. We extend Fabric with CRDTs and describe the design of
a new system called FabricCRDT. Our extension is imple-
mented without disrupting the standard behavior of Fabric,
making it backward compatible with existing chaincodes
and transactions. Also, our approach requires only minimal
changes to Fabric and reuses its main components.

3. Our solution simplifies the complexity of Fabric application
development by eliminating the developer’s concerns about
transaction failures due to concurrent update conflicts. Also,
we offer a simplified CRDT-based programmingmodel for de-
veloping CRDT-enabled applications on FabricCRDT, with
a minimal learning curve for developers who are already
familiar with Fabric.

4. We provide insights into the appropriate use cases for a
CRDT-enabled permissioned blockchain. We also perform
extensive evaluations to understand the best configuration of
FabricCRDT for executing CRDT-compatible applications.

The remainder of the paper is organized as follows. First, we
provide an overview of Fabric and CRDTs in Section 2, followed by
a detailed discussion of multi-version concurrency control (MVCC)
conflicts in Section 3, and our approach in Section 4 and Section 5.
We discuss use cases and the potential of CRDT-enabled blockchains
in Section 6. We report the results of our evaluation in Section 7
and review related work in Section 8.

2 Background
2.1 Hyperledger Fabric
Hyperledger Fabric (Fabric) is an open-source permissioned
blockchain, initially developed by IBM [31]. Fabric provides an
ecosystem for hosting and executing blockchain applications, of-
fering a wide range of features and services ranging from storing
the application data to a sophisticated identity and membership
management. Developers host smart contracts, also known as chain-
codes, on Fabric which clients interact with by creating and sub-
mitting transactions. Developers use chaincode shim that provides
APIs for the chaincode to interact with data on the ledger. Shim is
available in programming languages such as Go and Node.js.

The two main components of Fabric are peers and orderers.
Peers are responsible for executing transactions and storing the
data on their local copy of the ledger. The peer’s ledger consists
of an append-only blockchain and a world state database, realized
by CouchDB [14]. Executing all valid transactions included in the
blockchain starting from the genesis block results in the current
state of the world state database. Orderers are responsible for defin-
ing a total global order for transactions and batching the ordered
transactions into blocks. Fabric divides peers into organizations
and provides them with private communication channels. A com-
plete workflow for committing a transaction is depicted in Figure 1
(adapted from Ref. [34] ). Every successfully committed transaction
follows these three steps:

1. Execution and Endorsement: The client creates a transac-
tion proposal containing the name of the chaincode, the input
data, and the endorsement policy. An endorsement policy
specifies which peers from which organizations are required
to execute and sign the proposal (also known as endorsing).
The client submits the proposal to the peers specified by
the endorsement policy in parallel (Step 1 in Figure 1). Each
endorsing peer executes the chaincode against the local copy

of the world state database, signs the results, and sends the
results back to the client (Step 2). The results are in the form
of read and write sets, where read sets contain the keys read
during execution and write sets contain the key-value pairs
to be written to the ledger. Peers do not modify their lo-
cal copy of the ledger during this phase and only execute
the proposal in an isolated fashion, i.e., peers simulate the
transaction proposal.

2. Ordering: Once the client has received enough endorse-
ments that satisfy the endorsement policy, it creates a trans-
action containing the proposal’s payload, the endorsements,
and othermetadata, and sends the transaction to the ordering
service (Step 3). The ordering service receives transactions
from every client in the network, defines a total global or-
der for the transactions and batches them into new blocks
(Step 4), which are broadcast to the peers (Step 5).

3. Validation and Commit: Peers perform two validations
on the transactions in the incoming blocks and then commit
the transactions. For the first validation, a peer validates the
endorsement policies of the transactions in parallel to ensure
that each transaction satisfies the predefined endorsement
policy. Second, a peer sequentially compares the read-set
with its local copy of the world state database to ensure that
the records that were read during the endorsement phase
have not changed concurrently in the world state database.
The transactions that successfully pass both validations are
considered valid. Finally, a peer appends every valid and
invalid transaction in the block to the blockchain and up-
dates the world state database with the write-set of the valid
transactions.

2.2 Conflict-free Replicated Datatypes
CRDTs are abstract datatypes that can be replicated on several
nodes with the guarantee to eventually converge to the same state
without requiring a consensus protocol [29, 33]. CRDTs provide
well-defined application interfaces, representing specific data struc-
tures such as counters, sets, lists, maps, JSON objects, and others.
CRDTs provide these interfaces by extending the basic datatypes
with some metadata, which makes the updates on these datatypes
at least commutative. Thus, commutative updates can be applied in
different orders on replicas, resulting in the same state no matter
the order of updates, provided no updates are lost or duplicated.

In general, CRDTs are divided into two main categories: state-
based CRDTs and operation-based CRDTs. State-based CRDTs ex-
change the full state or delta state and merge the local state with
the received state. For operation-based CRDTs, nodes propagate
the state by sending update operations to other nodes. As an ex-
ample, a counter datatype which only increments a value by one
can be converted to a grow-only CRDT counter, by defining an
increment operation that increments the value of the counter by
one. The grow-only CRDT counter is relatively easy to create since
the increment operation is inherently commutative, although not
idempotent. Therefore, the grow-only CRDT counter converges to
the same state no matter in which order the operations are applied,
yet the same operation cannot be applied more than once. For inter-
acting with this counter over the network, nodes send increment
operations, and given an asynchronous distributed system where
the delivery of messages eventually succeeds without message loss
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Figure 1. Transaction flow in Hyperledger Fabric.

nor duplication, the counter eventually converges to the same value
on all nodes.

Among existing CRDTs, a JSON CRDT represents a complex
general-purpose data structure [23]. A JSON object is inherently
a tree structure, consisting of other structures like maps and lists.
In JSON, a map is a dictionary of key-value pairs where keys are
string constants and values are either primitive values like string
or numbers or complex structures like other maps and lists. In this
work, we assume that maps are unordered structures and the values
in the maps are either a string, a map, or a list. In JSON, lists are
arrays of objects, which can be a combination of primitive values
or complex structures, like string, numbers, maps or lists.

3 MVCC Conflicts
In this section, we analyze Fabric’s concurrency control mecha-
nism and the causes of transaction failures in more detail.

A transaction proposal invokes the chaincode on Fabric, which,
based on the implemented logic, interacts with the stored ledger
data in three ways during the chaincode execution:

• Read Transaction: Chaincode only reads key-value pairs
from the ledger.

• Write Transaction: Chaincode only writes key-value pairs
to the ledger without reading any pair.

• Read-Write Transaction: Chaincode reads and writes key-
value pairs from/to the ledger.

The execution of transaction proposals results in a read-write
set. The read set includes a list of keys and the version number of
the key’s value that a peer retrieved from the ledger during the exe-
cution of the chaincode. The write set contains the key-value pairs
that will be committed to the ledger at the end. Read transactions
do not change the state of the ledger, and clients do not send the
transactions for ordering and committing. The write transaction
results in a read-write set with an empty read set. Hence, these
transactions will not cause any read-write set conflict. However,
a read-write transaction with an outdated version number in the
read-set fails the validation. To illustrate the problem better, imag-
ine that at time TS1, peer P1 has the world stateWS: { (K1,VN1,VL1),

(K2,VN2,VL2), (K3,VN3,VL3) } and receives a block containing five
transactions with corresponding read-write sets as follows, where
K represent the key of the key-value pairs, VN represents the ver-
sion number of the retrieved key-value pairs from the world state
and VL is the value of the key to be written to the blockchain and
world state:

• T1: < Read : {(K2,VN2)},Write : {(K2,VL1)} >
• T2: < Read : {(K1,VN1), (K2,VN2)},Write : {(K3,VL3)} >
• T3: < Read : {(K2,VN2)},Write : {(K3,VL1)} >
• T4: < Read : {(K3,VN2)},Write : {(K2,VL1)} >
• T5: < Read : {},Write : {(K3,VL2)} >

Given that all five transactions pass the endorsement policy
validation (not explicitly shown here), P1 sequentially validates the
five transactions in the block by comparing the version number
of each key in the read set to the version number in the world
state. A transaction is considered valid if both version numbers are
equal. If the version numbers are not equal, the peer invalidates the
transaction as a multi-version concurrency control conflict (MVCC
conflict). The key’s mismatch is the result of updates committed
by preceding valid transactions. The preceding transactions may
be included either in the previous blocks or in the same block but
are preceding the current position of the conflicting transaction.
Committing keys in the write-set of the valid transactions causes
the version number of keys in the world state database to change.
Therefore, P1 marks T1 as valid and T2 and T3 as invalid, because
the write-set of T1 updates K2 so that its new version number VN′

2
and the version number of K2 in T2 and T3’s read-set does not
match (VN2 , VN′

2). Also, P1 marks T4 and T5 as valid.
This multi-version concurrency control mechanism is a com-

monly used method in database systems to increase the throughput
and decrease the latency, instead of using blocking mechanisms
such as shared locks [35]. Although this mechanism is necessary
for ensuring data consistency and isolation of transactions, the
relatively high latency between the creation of the read-write set
and the validation of the read-set in Fabric can result in a large
number of transactions in a block to fail, especially when a small
set of frequently accessed keys are included [15, 34]. This high
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latency consists of the endorsement latency, the ordering latency,
and the commit latency [37]. The endorsement latency is the time
needed for the client to obtain all the required endorsements, which,
depending on the endorsement policy and the complexity of chain-
codes, varies significantly for different transactions. The ordering
latency is the time required for the transaction to be included in
one block and to be broadcasted to the peers. The ordering service
creates a block based on several criteria, including the maximum
number of transactions, the maximum total size of transactions in
a block and a timeout period for creating blocks. For higher trans-
action arrival rates, the ordering service creates a block as soon as
the maximum size is reached. However, for lower arrival rates, the
transaction can be delayed until the timeout period is reached. The
timeout period is a configurable parameter which can be on the
order of seconds. Finally, the commit latency is the time taken for a
peer to validate and commit transactions in the block. These delays
are inherent to the design of Fabric and can not be significantly
reduced without fundamental changes to Fabric.

4 FabricCRDT Design
In this section, we discuss the system model and requirements of
FabricCRDT and introduce our approach for integrating CRDTs
with Fabric.

4.1 System Model
As FabricCRDT is an extension of Fabric, we assume the same
system model as Fabric. We consider an asynchronous distributed
model where all users and nodes are connected in a way that it is
guaranteed for all transactions to be delivered eventually, despite
arbitrary delays. However, the order of the transactions in a block
is not guaranteed to be the same order that transactions are issued
or arrive at the ordering service. As the ordering service does not
guarantee to prevent duplicate delivery of transactions, for example,
when the client intentionally or unintentionally submits duplicate
transactions, we rely on peers to identify the duplicate ones with
same transaction identification numbers. In this work, we assume
that clients do not submit duplicate transactions. In the case that
duplicate transactions are submitted, FabricCRDT also commits
duplicate transactions.

4.2 FabricCRDT Requirements
We define a set of requirements that FabricCRDTmust satisfy. First,
compatibility: we aim to extend Fabric with CRDT-enabled func-
tionalities with minimal changes to the original design of Fabric.
This way, we keep the learning curve minimal for developers who
already designed applications for Fabric. Also, the applications
developed for Fabric remain compatible with FabricCRDT. The
second requirement is no failure: FabricCRDT should be able to
commit all valid CRDT-based transactions successfully. We define
valid transactions as the transactions submitted by the client which
pass the endorsement policy validation successfully. The third re-
quirement is no update loss: by committing all valid transactions
in a block, FabricCRDT eventually converges to the same state on
all peers, and all client’s updates are preserved while using CRDT
techniques to merge conflicting transactions. The last requirement
is generality: to accommodate developers with the possibility of
realizing a wide range of use cases, the CRDT approach used for
merging conflicting transactions in FabricCRDT should provide
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users with a general-purpose data structure to submit data to the
ledger.

4.3 Fabric and CRDTs
To achieve the requirement we discussed, we need to identify the
right approach for dealing with conflicting transactions internally.
As discussed in Section 3, Fabric rejects transactions with an out-
dated version number of key-value pairs in the read-set and discards
these transactions’ write-set, as committing a write-set with out-
dated version can result in data inconsistencies. To avoid the failure
of conflicting transactions and data inconsistencies, FabricCRDT
does not reject transactions, but merges the values of the conflicting
transactions by using CRDT techniques.

Since we aim to keep Fabric applications compatible with Fab-
ricCRDT, we define a new type of transaction that encapsulates all
CRDT-related functionalities. Figure 2 displays the transaction flow
in FabricCRDT, where CRDT and non-CRDT transactions coex-
ist. CRDT transactions have a similar structure as standard Fabric
transactions; however, they invoke chaincodes whichmodify CRDT-
encapsulated values on the ledger. The chaincodes that contain
CRDTs are executed in the same way as non-CRDT chaincodes, but
peers flag the key-value pairs in the resulting transaction’s write-set
as “CRDT key-values”. On FabricCRDT, both types of transactions
go through the same ordering steps, but they are treated differently
in the final validation and commit phase. Non-CRDT transactions
go through the same validation steps as on Fabric, but CRDT trans-
actions only go through the endorsement validation check. Then,
instead of going through the MVCC validation, the transaction
values of conflicting transactions are merged automatically by us-
ing CRDT techniques before being committed to the ledger. The
CRDT procedures used for conflict resolution depends on the type
of CRDT object; for example, managing grow-only CRDT counters
requires different techniques than merging JSON CRDTs. In our
prototype of FabricCRDT, we support merging JSON CRDTs.

5 FabricCRDT Implementation
In the following section, we discuss the implementation of Fab-
ricCRDT in detail. We introduce our approach to integrate CRDTs
with peers. We also explain the mechanism for merging JSON ob-
jects using CRDT techniques. We implemented FabricCRDT based
on Fabric v1.4.0.

5.1 CRDT Transactions in a Block
The CRDT and non-CRDT transactions in a block follow the same
workflow until they reach the multi-version concurrency control
validation (MVCC validation). The non-CRDT transactions pass
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Algorithm 1:Merge CRDT transactions in a block.
1 ValidateMergeBlock (Block)

input :Block, A block received from the orderer.
output :MergedCRDTsBlock, A block with merged CRDT

transactions to be committed to the ledger.
2 CRDTs = set()
3 foreach TXi ∈ Block.Transactions do
4 foreach keyj , valuej ∈ TXi .WriteSet do
5 if valuej .IsCRDTObject() then
6 valuej .SkipMVCCValidation()
7 CRDT = CRDTs.GetObjectIfExists(keyj )
8 if CRDT == Null then
9 CRDT = InitEmptyCRDT(keyj , valuej )

10 CRDTs.SetObject(CRDT)

11 MergeCRDT(CRDT, valuej )
12 CRDTs.SetObject(CRDT)

13 else
14 // Skip the key-value and let it be handled as

non-CRDT transactions.

15 DoMVCCValidationOnNonCRDTTransactions(Block)
16 foreach TXi ∈ Block.Transactions do
17 foreach keyj , valuej ∈ TXi .WriteSet do
18 if valuej .IsCRDTObject() then
19 CRDT = CRDTs.GetObjectIfExists(keyj )
20 DataTypeObject =

CRDT.ConvertCRDTToDataType()
21 valuej = DataTypeObject.ConvertToBinary()
22 TXi .UpdateWriteSet(keyj , valuej )

23 return Block

through the MVCC validation, and the peer commits the valid trans-
actions to the ledger. The CRDT transactions in a block are merged
before getting committed. Algorithm 1 explains our approach for
managing transactions in a block on FabricCRDT.

For resolving the CRDT transactions in one block, first, we iterate
through all transactions in the block, and for each transaction, we
iterate through the key-value pairs in the transaction’s write-set
(lines 3 to 14 in the algorithm). If the key-value pair is not marked
as a CRDT, we skip the key-value pair to be handled as a non-
CRDT transaction. However, if the key-value pair is flagged as a
CRDT, the algorithm first checks if a CRDT object with the same
key already exists in a local set containing all CRDT objects. If
a CRDT object does not exist, the algorithm instantiates a new
CRDT object with the key and adds it to the set. The type of CRDT
object depends on the type of CRDT value in the key-value pair.
For example, for a JSON CRDT type, an empty JSON CRDT object
is instantiated. Afterward, the peer converts the binary value of
the key-value pair to the corresponding type and merges it with
the CRDT object. Then, the set containing all CRDT objects is
updated (lines 7 to 12). We discuss the steps required for merging
the individual CRDTs in Section 5.2. After the first iteration, the
peer performs MVCC validation on non-CRDT transactions (line
15). Afterward, the algorithm iterates through every transaction’s
write-set once more to check if there exists a CRDT object for that

key in the local CRDT set (lines 16 to 22). If a CRDT object exists,
then the CRDT object is converted to the corresponding datatype,
for example, for a JSON CRDT, it is converted to a JSON object (line
20). The converted object is a representation of the datatype with
all the CRDT-related metadata cleaned up and removed. Finally,
the object is converted into a byte array that replaces the value
of the key-value pair in the write-set of the transaction (lines 21
and 22). This second iteration through every transaction’s write set
is necessary because the peer is not aware of all key-value pairs
in the CRDT transactions in the block that needs to be merged
until the end of the first iteration. Once all CRDT transactions are
merged, the peer finalizes and cleans up the CRDT objects and
updates the write-values of the corresponding transactions with
the new converged value, which is then committed to the ledger.

As an example, consider two JSON objects in the write-sets of
two different transactions that have the same key, as depicted in
Listing 1. Since the values have JSON types, Algorithm 1 creates
one JSON CRDTwith the identifier Device1 and extends and merges
the created JSON CRDT with both values.

Listing 1. Sample JSON objects in transactions’ write-set.
"CRDT−Transa c t i on1 −Write−Se t " : [ (

" Key " : " Dev ice1 " ,
" Value " : {

" tempReadings " : [ {
" t empe ra tu r e " : " 1 5 "

} ] } ) ]
"CRDT−Transa c t i on2 −Write−Se t " : [ (

" Key " : Dev ice1 " ,
" Value " : {

" tempReadings " : [ {
" t empe ra tu r e " : " 2 0 "

} ] } ) ]

The result of merging the two CRDT transactions is shown in
Listing 2. The write-set of Transaction 2 is identical to the write-set
of Transaction 1.

Listing 2. Result of example JSON merge.
"CRDT−Transa c t i on1 −Write−Se t " : [ (

" Key " : " Dev ice1 " ,
" Value " : {
" tempReadings " : [ {

" t empe ra tu r e " : " 1 5 "
} , {

" t empe ra tu r e " : " 2 0 "
} ] } ) ]
"CRDT−Transa c t i on2 −Write−Se t " : [ (

" Key " : " Dev ice1 " ,
" Value " : {
" tempReadings " : [ {

" t empe ra tu r e " : " 1 5 "
} , {

" t empe ra tu r e " : " 2 0 "
} ] } ) ]

5.2 JSON CRDTs on FabricCRDT
Although the approach discussed in Algorithm 1 is independent of
the CRDT types, the necessary mechanism for resolving conflicts
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and merging different CRDTs varies between different CRDT types
and requires specific implementation support. In our prototype of
FabricCRDT, we focused on implementing and integrating JSON
CRDTs [23], which provide a general-purpose data structure for
complex use cases.

We implemented JSON CRDTs based on the theoretical work
of Klepmann et al. [23] and a GoLang JSON CRDT implementa-
tion [28]. In Ref. [23], the authors introduce the formal semantics
and the algorithm for implementing an API for interacting with a
JSON CRDT. The algorithm provides an API for modifying JSON
objects, such as inserting, assigning, and deleting values, as well
as reading from the JSON. The Reading API does not cause any
modification to the JSON, but modifying the JSON is represented
by operations which have globally unique identifiers. The API de-
scribed by the authors, although necessary for ensuring the auto-
matic resolution among several processes, is cumbersome to use
for chaincode developers. In FabricCRDT, every peer observes the
transactions in a block in the same order. We exploit this prop-
erty to simplify the API. To use the JSON CRDTs in the chaincode,
similar to chaincodes on Fabric, developers should create JSON
objects. However, for submitting the key-value pairs to the ledger,
the developer should use the CRDT-specific putCRDT command
that we implemented in the chaincode shim. This command only
informs the peer that this value is a CRDT and does not interact
with the CRDT in any way. The operations required for merging the
JSON CRDTs are performed on the peers without the interference
of the chaincode developer.

Algorithm 2 describes our approach for merging JSON CRDTs.
This algorithm is the implementation of theMergeCRDT function in
line 11 of Algorithm 1. Algorithm 2 iterates through each key-value
pair in the JSON object, where the value is either a string, a list, or a
map. The items included in the list or map may include nested maps
or lists. For each value in the JSON object, first, we create an empty
cursor and an empty dependency list (lines 3 and 4). The cursor
defines the path from the head of the JSON CRDT to the node where
the mutation for modifying the JSON CRDT happens. A mutation
defines the modification, such as add or delete, that is applied to the
JSON object. The dependencies set contains the unique identifier
of all operations which should be performed before the current
operation is executed. We ensure that the operations identifiers are
globally unique by using an instance of a Lamport Clock [25] for
each JSON CRDT instantiation. The Lamport clock is incremented
by one with every new operation to ensure the causal order of the
operations.

If the value of a key in the JSON object is a string, the algorithm
executes lines 6 to 11. First, it extends the cursor with the current
key and increments the Lamport clock by one. Then, it creates a
mutation for inserting the current string value and the current key.
Afterward, an operation is created with the current value of the
Lamport clock as the identifier of the operation. The operation also
holds the mutation, a dependency list, and the cursor pointing to
the location in the JSON CRDT where the mutation occurs. Finally,
the operation is applied to the JSON CRDT (line 10). For applying
the operation, first, we check if all dependencies in the operation’s
dependency list are already applied. If some of the operations are
missing, we queue the operation until all dependencies are applied.
If there is no pending operation, we apply the operation by using
the operation’s cursor to traverse from the head of the JSON CRDT.
For every node in the cursor, if the node already exists, we add

Algorithm 2:Merge a JSON object with JSON CRDT.
1 MergeCRDT (JsonCRDT, Json)

input :JsonCRDT, An initialized JSON CRDT object.
input :Json, A JSON object to be added to the JSON

CRDT.
2 foreach keyi , valuei ∈ Json do
3 cursor := NewCursorElements()
4 dependencies = set()
5 if valuei .IsString() then
6 AddCursorElement(cursor, keyi )
7 JsonCRDT.TickClock()
8 mutation = NewInsertMutation(keyi , valuei )
9 operation =

NewOperation(JsonCRDT.ClockToString(),
dependencies, cursor, mutation)

10 ApplyOperationToJSON(JsonCRDT, operation)
11 dependencies.Add(JsonCRDT.ClockToString())

12 else if valuei .IsList() then
13 foreach listValuej ∈ valuei .GetListItems() do
14 AddCursorElement(cursor, keyi )
15 RecursivelyAddListItemToJsonCRDT(

JsonCRDT, keyi , listValuej ,
dependencies, cursor)

16 RemoveCursorElement(cursor, keyi )

17 else if valuei .IsMap() then
18 foreach

mapKeyj , mapValuei ∈ valuei .GetMapItems() do
19 AddCursorElement(cursor, keyi )
20 RecursivelyAddMapItemToJsonCRDT(

JsonCRDT, mapKeyj , mapValuei ,
dependencies, cursor)

21 RemoveCursorElement(cursor, keyi )

the identifier of the current operation to the node to record the
current operation’s node dependencies. If the node from the cursor
is missing in the JSON CRDT, we add the node to the JSON CRDT
and the operation’s identifier to the node. Once we reach the end
of the cursor and the location of the node is found, we apply the
mutation to the JSON CRDT and insert the node. For adding the
node, we insert a dictionary item with the key as the operation
identifier, and the value as the string value from the JSON object.

When the value of the JSON object is a list, we iterate through
the list’s items (lines 14 to 16). For every list item, first, we append
the cursor with the current key in the JSON object, then we call a
recursive function that extends the JSON CRDT with the content of
the list item. We use a recursive function since the value of the list
item could either be a string, a list, or a map, which may contain
further nested list or map items. The recursive function either
extends the JSON CRDT with the string value as described in the
algorithm (lines 6 to 11) or if the value is a list or a map, it extends
the JSON CRDT (lines 13 to 16 or lines 18 to 21, respectively.) When
the value of the JSON object is a map (lines 18 to 21), we follow
the same approach as the list type, but we extend the cursor with
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the key of the key-value pairs in the map instead of the key of the
current JSON object.

To limit the complexity of our prototype, the JSON lists in our
system only support string, map, and list. Therefore, when users
require to use other datatypes, such as numbers or Boolean, they
should convert the desired datatype to strings.

6 Use Cases and Potentials of a CRDT-enabled
Fabric

Numerous use cases have been proposed that benefit from CRDT-
enabled database systems, such as data metering, global voting plat-
forms, and shared document editing applications [24, 29]. Similarly,
these use cases also benefit from the advantages that permissioned
blockchains offer, for instance, decentralized trust. CRDT-enabled
blockchains ease the realization of these use cases on blockchains.

FabricCRDT, as an extension to Fabric, supports all use cases
that can be implemented on Fabric. However, based on the re-
quirements we explained in Section 4.2, FabricCRDT, by taking
advantage of CRDTs, offers two additional properties which are
beneficial to the CRDT use cases. FabricCRDT ensures that (1) all
submitted transactions that pass endorsement policy validation are
committed successfully (no failure requirement) and (2) no user
updates are lost when concurrent updates on the same keys are
submitted (no update loss requirement), i.e., it offers eventual strong
consistency.

One major use case that benefits from FabricCRDT are collabo-
rative document editing platforms, which provide an environment
for users to concurrently work on shared documents. Because of
the inherent concurrent nature of these platforms, conflicts from
updating the same content can frequently occur. CRDTs are a prac-
tical technique for resolving these kind of conflicts [1, 2]. By using
CRDT features that FabricCRDT offers, like JSON CRDTs, devel-
opers can create blockchain-based document editing applications.
On FabricCRDT, documents are stored as JSON objects, and edit
updates are committed as CRDT transactions. Now, updates are
merged without the loss of user’s data (no update loss requirement);
further, no updates will fail, so that users do not need to redo and
resubmit their edits (no failure requirement). Furthermore, users
benefit from the trust and security of permissioned blockchains
when they use FabricCRDT. Ref. [23] discusses how JSON CRDTs
are used for representing text documents.

Another prominent application of permissioned blockchains is
supply-chain management applications for tracing and ensuring the
quality of different products from food to pharma industries [7, 38].
Sensitive goods like drugs and fresh fruits and vegetables should
be kept within specific conditions, e.g., regarding temperature, hu-
midity, and light, during transportation and storage. To ensure that
these goods are treated in compliance with regulations and policies,
sensors continuously monitor the goods and record the readings
on the blockchain to keep them secured against manipulations.
Although the use case of storing a stream of sensor readings from
IoT devices can be implemented on Fabric, we argue that this use
case is even a better fit for FabricCRDT. Depending on the design
of the system, different readings from different IoT devices may
collide, for example, when a temperature sensor and a humidity
sensor concurrently submit records to update a shared list of the
sensor readings of the same good. Using FabricCRDT, it is ensured
that conflicts are merged automatically and that all sensor data end

up in the world state (no update loss requirement). Due to resource
limitations of IoT devices (e.g., regarding energy), the extra effort
required for resubmitting failed transactions may be prohibitive.
Using FabricCRDT makes it possible for IoT devices to submit
transactions once without needing to take care of transaction fail-
ures and data loss (no failure requirement).

There are also limitations to FabricCRDT. Use cases that require
transactional isolation of repeatable reads [5] are not a good fit,
as FabricCRDT commits transactions even if their read-set is out-
dated. This includes use cases for transferring assets. For example,
financial applications like SmallBank [34] or FabCoin [3], which
are developed for Fabric, are bad choices to be adapted as a CRDT-
based blockchain application. These applications represent asset
creation and transfers between the owner; modeling them as CRDTs
results in vulnerabilities, e.g., to the double-spending attack [20],
where an attacker creates several transactions to transfer a single
asset to multiple owners. On Fabric, only one of the attacker’s
transactions is successfully committed, and the MVCC validation
fails on other transactions, since the committed transaction causes
the read-set of other transactions to be outdated. However, Fabric-
CRDT skips the MVCC validation, merges the transactions’ values,
and successfully commits all of the attacker’s transactions.

7 Evaluation
In this section, we provide a comprehensive evaluation of our de-
sign. We evaluate the number of successful transactions, latency,
and the throughput of FabricCRDT and Fabric under various
configurations and workloads.

7.1 Workload Generation
Currently, the blockchain research community lacks a standard
workload and benchmarking approach for evaluating different
blockchain systems. Benchmarks such as TPC-C [10] and TPC-
H [11] from the database community are not directly applicable
to blockchains. They have been created for database systems and
are not directly compatible with Fabric or FabricCRDT. Adapting
these workloads to the transactional structures of Fabric or other
blockchain systems requires a steady community effort.

We created a custom workload for evaluating the performance
of FabricCRDT, consisting of chaincodes for an IoT use case and
use Hyperledger Caliper [30] for generating and submitting the
transactions and collecting the performance metrics. When design-
ing the workload, we focused on understanding the limitations and
potentials of a CRDT-enabled Fabric. Since standard transactions
in Fabric and FabricCRDT go through identical workflows, we
argue that for conflict-free workloads both systems show similar
performance. For this reason, for most experiments, we evaluate
the performance of FabricCRDT on workloads that consist of
conflicting read-write transactions. Additionally, we perform one
set of experiments with workloads consisting of conflicting and
non-conflicting transactions in different ratios.

For our experiments, we implemented a chaincode that receives
and stores temperature readings and device identification numbers
of IoT devices. When executing a transaction, the chaincode first
reads a key-value pair from the ledger, where the key is the device’s
identification number and the value is a JSON object containing the
previous temperature readings of the device. Then, the chaincode
adds the new temperature reading to the JSON object and submits
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it to be written to the ledger. As an example, Listing 3 shows the
JSON object that a transaction submits with one property for the
device identification number and a list containing three temperature
readings. For each experiment, the structure of the JSON object and
the number of submitted JSON objects differ, which we will specify
accordingly. However, the logic and behavior of the chaincode are
the same for all experiments.

Listing 3. Sample JSON object submitted by a transaction.
{ " d ev i c e ID " : " e 2 3d f 7 0a " ,

" t empe r a tu r eRead ing s " : [
{ " t empe ra tu r e " : 25 } ,
{ " t empe ra tu r e " : 30 } ,
{ " t empe ra tu r e " : 15 }

] }

7.2 Experimental Setup
We deployed a Fabric network on a Kubernetes v1.11.3 cluster
consisting of three controller nodes, three worker nodes, one DNS
and load balancer node, one NFS node, and one command-line
interface (CLI) node. All nodes except the CLI node run on Ubuntu
16.04 virtual machines (VMs) with 16 vCPUs and 41 GB RAM. The
CLI node runs on an Ubuntu 16.04 VM with 8 vCPUs and 20 GB
RAM. All VMs are installed on top of KVM provided by OpenStack
Mitaka and are interconnected by 10 GB Ethernet. We use CouchDB
as the world state database and Apache Kafka/Zookeeper for the
ordering service. Also, we use Hyperledger Caliper v0.1.0 [30]. All
experiments run a Fabric and a FabricCRDT network of three
organizations, two peers per organization, one orderer node, and
one channel.

For the evaluations, we kept the number of organizations, peers,
channels, and clients constant. Since in FabricCRDT, we did not
change any Fabric components that are responsible for the com-
munication between different parts over the network, we focus
on evaluating the internal behavior of peers in FabricCRDT and
Fabric.

For each experiment, we start with an empty ledger and pop-
ulate the ledger with keys that are read during the experiment
as included in the configuration table of each experiment. During
an experiment, Caliper uses four clients to submit in total 10,000
transactions. Besides this fixed setup, each experiment employs an
additional configuration which we will specify.

7.3 Effect of Different Block Sizes
We examine the impact of the block size on the total number of
successful transactions, the throughput of successful transactions,
and the average latency of successful transactions. We configured
the FabricCRDT and Fabric networks as described in Table 1 and
only changed the block size in each experiment. We configured the
maximum and preferred number of bytes for a block to 128 MB
and the block timeout to 2 seconds. We kept these values fixed for
each experiment but gradually increased the maximum allowed
number of transactions in a block from 25 to 1000. Each chaincode
invocation reads one key-value pair from the ledger and writes one
pair back. Also, the JSON object that is written to the ledger has
two keys, containing a string constant and a list, as we exemplify
in Listing 3.

In order to find the best configuration of FabricCRDT and Fab-
ric under worst-case workloads, all transactions modify the same
keys; hence, all transactions are dependent on each other and are
conflicting, FabricCRDT will merge all the key-value pairs of all
transactions in each block. Therefore, a higher number of transac-
tions in a block induces a higher overhead for the peer to merge a
higher number of JSON CRDTs.

Table 1. Configuration for evaluating the impact of the block size.

Parameters Value
Transaction submission rate per second 300
Number of read keys per transaction 1
Number of write keys per transaction 1
Number of keys per JSON object 2

Observations - The results of the experiments are summarized
in Figure 3. In Figure 3(a), we can observe that FabricCRDT has
a higher throughput for smaller block sizes. The main reason for
the degradation of throughput in FabricCRDT with larger block
sizes is the higher overhead required for merging a higher number
of JSON CRDTs. For FabricCRDT, the highest throughput overall
was 267 transactions per second for a block size of 25 transactions.

We can observe in Figure 3(b) that FabricCRDT experiences a
higher transaction commit latency for larger block sizes because of
the lower throughput, resulting inmore time needed for committing
all transactions. In Figure 3(c), we can observe that FabricCRDT
successfully commits all submitted transactions. In Fabric, there
are always some conflicting transactions that cannot be committed,
while in FabricCRDT, all conflicts are automatically merged, and
all transactions are successfully committed.

In the following experiments, we fix the block size to 25 trans-
actions/block for FabricCRDT, and to 400 transactions/block for
Fabric. This way, we run both systems in their best configuration
to get a fair comparison.

7.4 Effect of Different Number of Reads and Writes
To understand the effect of a higher number of key-value pairs
in the transaction’s read-write set, we change the number of key-
value pairs that were read from and written to the ledger. For each
experiment, we chose either 1, 3, or 5 key-value pairs to be read
and to be written. Table 2 specifies the experimental configuration.
During each experiment, we kept the set of read and write keys
identical for all transactions. For example, in the experiment with
five read-keys and five write-keys, in every transaction, we read or
write the same set of 5 distinct keys.

Table 2. Configuration for evaluating the impact of read and write
keys.

Parameters Value
Transaction submission rate per second 300
Number of keys per JSON object 2

Observations - Figure 4 summarizes the results of the experi-
ments. As expected, we can observe in Figure 4(a) that the through-
put of FabricCRDT decreases as the read-write set grows, because
of the increased overhead for merging a larger number of values.
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(a) Successful transactions throughput per second for different block sizes.
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(b) Average latency of successful transactions for different block sizes.
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(c) Number of successful transactions for different block sizes.

Figure 3. Effect of block size on throughput, latency, and success
rate of FabricCRDT and Fabric.

We see that FabricCRDT is affected by both the number of reads
and writes in the transactions. In comparison to FabricCRDT, Fab-
ric shows a lower transaction throughput (Figure 4(a)) and a lower
total number of successful transactions (Figure 4(c)). On the other
hand, FabricCRDT has a higher commit latency in comparison to
Fabric (cf. Figure 4(b)).
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(a) Successful transactions throughput per second for different number of
read-write keys.
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(b) Average latency of successful transactions for different number of read-
write keys.
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(c) Number of successful transactions for different number of read-write
keys.

Figure 4. Effect of different number of reads and writes in transac-
tions on the throughput, latency, success rate of FabricCRDT and
Fabric.

7.5 Impact of Varying Complexity of JSON Objects
In contrast to the experiments in Section 7.4, here, we evaluate the
effect of varying complexity of JSON objects that are written to
the ledger. In particular, we study how the throughput and latency
of FabricCRDT changes, as merging more complex JSON objects
induces more overhead. Table 3 shows the configuration of this
experiment. Each transaction reads one JSON object from ledger
with a certain number of keys and a certain nesting depth of the
values; then, the transaction modifies the JSON object and writes
it back to the ledger. Listing 4 exemplifies a JSON object with “3-3
complexity”, i.e., the transaction submits a JSON object with three
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key-value pairs, where each value has a depth of three from the
root of the JSON object.

Table 3. Configuration for evaluating the impact of different com-
plexity of JSON objects.

Parameters Value
Transaction submission rate per second 300
Number of read keys per transaction 1
Number of write keys per transaction 1

Observations - Figure 5 summarizes the results of the experi-
ments. Similar to the experiments in Section 7.4, we observe that the
throughput decreases and the latency increases for FabricCRDT
with an increasing complexity of JSON objects (cf. Figure 5(a) and
Figure 5(b)). Unlike FabricCRDT, Fabric does not interact with the
content of the JSON objects. Therefore, the throughput and latency
of Fabric are not correlated to the complexity of the JSON objects.

Listing 4. A sample JSON object with “3-3” complexity.
{ " temperatureRoom1 " : [

{ " t empera tu r eRead ing " : [
{ " t empe ra tu r eVa lue " : 10
} ] } ] ,

" temperatureRoom2 " : [
{ " t empera tu r eRead ing " : [

{ " t empe ra tu r eVa lue " : 20
} ] } ] ,

" temperatureRoom3 " : [
{ " t empera tu r eRead ing " : [

{ " t empe ra tu r eVa lue " : 15
} ] } ] }

7.6 Impact of Different Transaction Arrival Rates
Further, we evaluate the effect of different transaction arrival rates
on FabricCRDT and Fabric. We configured each experiment ac-
cording to Table 4. We employ four clients in total, where all clients
together submit transactions with a rate of 100 to 500 transactions
per second.

Table 4. Configuration for evaluating the impact of different trans-
action arrival rates.

Parameters Value
Number of read keys per transaction 1
Number of write keys per transaction 1
Number of keys in JSON objects 2

Observations - As the results of the experiments in Figure 6(a)
show, FabricCRDT’s throughput increases until it reaches a sat-
uration point at about 250 transactions per second. Meanwhile,
Figure 6(b) shows that the latency increases as the transaction ar-
rival rate increases for FabricCRDT. The enormous increase in
latency in FabricCRDT can be attributed to the effects of queuing
when the transaction arrival rate exceeds the throughput.
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(a) Successful transactions throughput per second for different JSON com-
plexities.
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(b) Average latency of successful transactions for different JSON complexi-
ties.

2—2 3—3 4—4 5—5 6—6
FabricCRDT – 25 TX/B 10000 10000 10000 10000 10000
Fabric – 400 TX/B 34 8 25 9 11

0

2000

4000

6000

8000

10000

12000

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns

Number of Keys in JSON Object — Nesting Depth Each Key's Value  

(c) Number of successful transactions for different JSON complexities.

Figure 5. Effect of the complexity of JSON objects in the transac-
tions on the throughput, latency and success rate of FabricCRDT
and Fabric.

7.7 Impact of Different Percentage of Conflicting
Transactions

In order to understand the limitations and potentials of Fabric-
CRDT, in the previous experiments, we used workloads where all
transaction are conflicting. However, for production deployment of
Fabric and FabricCRDT, where different applications are hosted,
blocks may contain both conflicting and non-conflicting transac-
tions. To study the effects of different percentages of conflicting
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(a) Successful transactions throughput per second for different transaction
arrival rates.
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(b) Average latency of successful transactions for different transaction
arrival rates.
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(c) Number of successful transactions for different transaction arrival rates.

Figure 6. Effect of different transaction arrival rates on the through-
put, latency, and success rate of FabricCRDT and Fabric.

transaction in the workload, we configured experiments as specified
in Table 5. For each experiment, a fixed percentage of transactions
are conflicting, where the conflicting transactions are merged in
FabricCRDT and rejected in Fabric.

Observations - Figure 7 summarizes the results of the exper-
iment. We observe for workloads, where a smaller percentage of

Table 5. Configuration for evaluating the impact of percentage of
conflicting transactions in the workload.

Parameters Value
Transaction submission rate per second 300
Number of read keys per transaction 1
Number of write keys per transaction 1
Number of keys per JSON object 2

transactions are conflicting, that the throughput and latency of
FabricCRDT are similar to Fabric (Figure 7(a) and Figure 7(b)).
However, when the percentage of conflicting transaction increases,
the number of failures also increases in Fabric (Figure 7(c)), while
no failures occur in FabricCRDT.

7.8 Summary of Results and Discussion
Since FabricCRDT bypasses the MVCC validation and merges the
conflicting transactions instead of rejecting them, it manages to
commit all transactions in all experiments successfully. In stark
contrast to this, Fabric only successfully a very few transactions
when all transactions are conflicting.We argue that the performance
of FabricCRDT is an improvement to Fabric, since handling such
a large amount of the transaction failures in the application may
be a significant burden and increases the complexity of developing
Fabric applications.

In our experiments, we observed that FabricCRDT, in compari-
son to Fabric, suffers from a higher latency, which is a direct result
of the extra processing required for merging a large number of JSON
CRDTs. For adding each key in the JSON object to a JSON CRDTs,
metadata has to be created, and the complexity of JSON CRDTs
increases when more keys and values are added. However, in most
parts of our evaluation, we investigated the worst-case scenarios
where all transactions in a block are conflicting and are required
to be merged. For scenarios where conflicting and non-conflicting
transactions coexist, the results of experiments show that Fabric
and FabricCRDT have comparable latency and throughput.

8 Related Work
Various CRDTs have been proposed and implemented in production-
grade collaborative editing tools and distributed databases [8, 27,
36, 40]. Although these works offer practical solutions for improv-
ing the scalability and enhancing the user experience, only a few
works investigate the applicability of CRDTs on blockchains. In
Ref. [21], the authors propose Vegvisir, a directed acyclic graph
(DAG)-structured blockchain for CRDT-enabled applications. Veg-
visir offers a power-efficient blockchain for IoT devices which tol-
erates network partitioning, but it only supports applications that
can be implemented completely in CRDTs. Furthermore, a proposal
has been introduced by Fabric developers to enhance Fabric’s
concurrency control by using built-in plugins for parallel execution
of basic updates such as incrementing or decrementing values [19].
However, the implementation of this proposal has not been released,
and the available information on the proposal is limited and lacks
technical details.

Some works investigated various approaches for improving the
performance and throughput of Fabric. In Ref. [34], the authors
use transaction reordering techniques [12] inspired by databases
to improve the throughput of Fabric and to early abort conflicting
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(a) Successful transactions throughput per second for different percentage
of conflicting transactions in the workload.
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(b) Average latency of successful transactions for different percentage of
conflicting transactions in the workload.
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(c) Number of successful transactions for different percentage of conflicting
transactions in the workload.

Figure 7. Effect of different percentage of conflicting transactions
in the workload on the throughput, latency, and success rate of
FabricCRDT and Fabric.

transactions. They decrease the number of conflicting transactions
by improving the order of the transactions in the ordering service
according to a dependency graph. Although they show that reorder-
ing is a practical approach for decreasing transaction failures, they
do not aim for the total elimination of failures, as FabricCRDT
does. Several works focused on identifying different bottlenecks

of Fabric and offering solutions [4, 6, 16, 18, 37]. In Ref. [6, 18],
the authors offer solutions for improving the performance issues
of the ordering service. The authors of StreamChain [18] propose
an approach for replacing Fabric’s block processing mechanism
with stream transaction processing to decrease the end-to-end la-
tency of committing transactions. In Ref. [6], the authors propose
a new Byzantine fault-tolerant protocol for the ordering service
to increase the throughput of Fabric by decreasing the message
communication overhead. The authors of Ref. [16, 37] offer exten-
sive analysis and re-architecting guidelines of Fabric to improve
several bottlenecks, including the consensus mechanism, I/O and
computational overhead for ordering and validating transactions
and repeated validation of certificates for endorsement policies.
They implemented improvements such as the parallelization of
several Fabric processes, separation of different resources, and
caching. All these works provide valuable insights into different
approaches that can improve the performance of Fabric. As Fabric-
CRDT reuses several of Fabric’s components, these approaches are
also applicable to FabricCRDT. However, none of these works pro-
vide a solution for dealing with transaction failures of concurrent
updates directly.

9 Conclusion
In this work, we introduced an approach for integrating CRDTs
with Hyperledger Fabric. We presented FabricCRDT, an extension
of Fabric, that successfully commits transactions that perform con-
current updates and automatically merges conflicting transactions
by using CRDT techniques without losing updates. We conducted
extensive evaluations to understand how FabricCRDT performs
in comparison to Fabric. According to our findings, FabricCRDT
successfully merges all conflicting transactions without any failures
when all transactions use CRDTs. In general, FabricCRDT offers
higher throughput than Fabric but also induces higher commit
latency due to the added overhead of merging CRDTs.

In future work, we plan to extend FabricCRDT with more
CRDTs, such as list, map, and graph CRDTs. We also investigate
the effect of eliminating the ordering service to understand the
potentials of a purely CRDT-based permissioned blockchain.
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