Demo Abstract: eVIBES: Configurable and Interactive
Ethereum Blockchain Simulation Framework

Aditya Deshpande
Technical University of Munich
aditya.deshpande@tum.de

ABSTRACT

Cryptocurrencies and Distributed Ledger Technologies, such as
Ethereum have received extensive attention over the past few years.
With the increasing popularity of Ethereum, comprehensive under-
standing of its various properties plays a critical role in the wide-
spread adaptation. However, due to the significant requirements
for deploying a full Ethereum blockchain and high running costs,
it is challenging to study the dynamic properties of the Ethereum.
In this work, we propose eVIBES, a configurable simulation frame-
work for gaining empirical insights into the dynamic properties of
Ethereum.

CCS CONCEPTS

« Computer systems organization — Peer-to-peer architec-
tures;

KEYWORDS

Blockchain, Ethereum, Simulation

1 INTRODUCTION

Comprehensive analysis of the dynamic properties of a real deploy-
ment of Ethereum is a difficult task due to the massive deployment
efforts and high running costs. In this study, we propose eVIBES, an
event-driven, concurrent, message-oriented, broadcast-based con-
figurable Ethereum simulation for simulating large-scale Ethereum
networks. eVIBES enables users to study the behavior of Ethereum-
like blockchain systems by deriving empirical insights into the
system by configuring the blockchain parameters. We designed
eVIBES with two primary objectives in mind: scalability and config-
urability. Scalability enables the system to simulate a large number
of nodes, without compromising the simulation speed or efficiency.
Configurability offers the user to configure the Ethereum network
both before the start of the simulation and during the simulation
execution. eVIBES is inspired by VIBES [5], a configurable Bitcoin-
like blockchain simulator capable of conducting large-scale peer to
peer networks simulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware '18, December 10—14, 2018, Rennes, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6109-5/18/12...$15.00
https://doi.org/10.1145/3284014.3284020

Pezhman Nasirifard
Technical University of Munich
p-nasirifard@tum.de

Hans-Arno Jacobsen
Technical University of Munich

2 RELATED WORK

The Ethereum ecosystem is rich with tools such as Ganache!, Hive?
and other peer-to-peer network tools such as PeerSim [4], OPNET
[3], but all have different objectives than ours when it comes to
testing the Ethereum networks. Ganache is a tool for creating and
testing private Ethereum blockchains. However, it does not capture
how the nodes work with each other and how they reach a consen-
sus. Hive is a practical tool for testing the clients in the Ethereum
blockchain by creating docker images for the clients. However,
simulating a large number of nodes is difficult with limited compu-
tational resources. None of these tools analyzes the behavior of the
system as a whole and are limited to testing Ethereum smart con-
tracts and decentralized applications. eVIBES simulates the whole
Ethereum blockchain without creating full-fledged node instances
and aims to enable the users to understand the whole blockchain
network.

3 SYSTEM ARCHITECTURE

eVIBES architecture is based on the Actor Model and follows the
reactive manifesto®. The primary components of the system are the
Orchestrator and Reducer, as Figure 1 displays. The Nodes, which
are marked in blue, operate similarly to an actual Ethereum client
as described in the Ethereum yellow paper [1], excluding the Proof-
of-Work (PoW) computations. The Nodes execute independently
and perform the block verification and transaction execution.

The Orchestrator node is the primary component for controlling
the whole simulation. It is responsible for receiving the simulation
configuration from the users and setting up the simulation which
includes the creation of all Ethereum nodes, accounts and periodical
transactions generation. The user can start/stop and control the
simulation parameters during its execution by communicating with
the Orchestrator. The Reducer is responsible for generating the
output of the simulation and presenting the data to the user. The
visualization of the simulation outcome is inspired by the existing
systems like ethstats* and etherchain®.

The user can configure the following simulation parameters: the
number of nodes, the number of accounts, the number of transac-
tions, the rate of transaction generation, the range of gas limit for
miner nodes, and the smart contract code (ability to upload smart
contracts for execution during simulation). Besides, users can over-
ride default values for the genesis block before the execution starts.
The simulation outputs the following metrics: the total execution
time, the total number of transactions processed, the throughput
(transactions per second), the block propagation delay, the cost

Lhttp://truffleframework.com/ganache/
Zhttps://github.com/karalabe/hive
3https://www.reactivemanifesto.org/
“https://ethstats.net/
Shttps://www.etherchain.org/

https://doi.org/10.1145/3284014.3284020
http://truffleframework.com/ganache/
https://github.com/karalabe/hive
https://www.reactivemanifesto.org/
https://ethstats.net/
https://www.etherchain.org/

Middleware ’18, December 10-14, 2018, Rennes, France

1. Receives msgs from all nodes.
2. Provides socket interface for StorageManager
runtime network info.

Reducer

(simulator node)

1

ode

Node] StorageManager
ol

= B
StorageManager
M

g0

1. Create accounts.

2. Create transactions

3. Create and update nodes
4. Make/ Break connections
between nodes.

5. Provide web interface

Orchestrator

node)

SSE (Server sent events)\‘ WebSocket

Web Browser

Figure 1: eVIBES system architecture.

per transaction, a log of all transactions. Other metrics such as the
change in difficulty over time, the change in block duration over
time, the change in gas limit over time are also presented at the end
of the simulation. Output also includes the start and end states of all
accounts. The system allows the inputs to be changed while the sim-
ulation is running. eVIBES allows manipulation of parameters like
the transaction rate, the miner gas limit, and the network latency
during the simulation execution. eVIBES models the valid block
generations (PoW in Ethereum network), as a probability score.
This feature leads to multiple nodes generating valid blocks around
the same time for similar transactions, as is the case in Ethereum
blockchain. eVIBES stores these orphan blocks as Uncle/Ommer
blocks in the blockchain and rewards the miners of those blocks
following the GHOST protocol [2].

We open-sourced the simulator, and the source code is publicly
available®.

4 SMART CONTRACT EXECUTION

Smart contracts are one of the essential features of Ethereum. We
create additional entities to enable contract execution in eVIBES,
as the Figure 2 shows. Initially, a user can upload contract code
using the user interface. Execution of all the uploaded contracts
is performed by the SolidityExecutionEnv, during the initialization
of the simulation. Each contract gets associated with an account.
We store the context of these executions in the system. Similar to
Etheruem system, the contract’s code executes when a transaction
is sent to a contract account.

5 SOFTWARE DEMONSTRATION

eVIBES offers a web-based interface for managing the simulation
process. A real-time connection to the Reducer enables the user

Chttps://github.com/i13-msrg/evibes

Aditya Deshpande et al.

7. Unblock the Node

4. Selects the specified contract

5. Retuns the data and passes the args for exec

EVM Handler

1. Sends a Tx with L 3 Sends accuunJ

account info and 2. Retrieve info with contract

INIT : Fetch all the contracts as
contract to be accound info to be executed

executed, mentioned in the settings and
(Blocking call) make them execution ready

6. Update
Luac\Haranv%

account state

StorageManager

Figure 2: Smart contract execution workflow.

to view all the activities in the simulation. The simulation can
simulate a large number of nodes to mimic the behavior of Ethereum
Blockchain network.

6 CONCLUSIONS

We offered a design and development of eVIBES, an event-driven,
concurrent Ethereum blockchain simulator for large-scale network
simulations. The visualization of simulation outcome, the scalability
and run-time reconfigurability of eVIBES make it a useful tool in
analyzing the dynamic behavior of the blockchain.

ACKNOWLEDGMENTS

Alexander von Humboldt Foundation supported this project.

REFERENCES

[1] 2015. ETHEREUM: A secure decentralised generalised transaction ledger byzan-
tium version adc4e61 - 2018-04-04. Retrieved August 10, 2018 from https:
//ethereum.github.io/yellowpaper/paper.pdf

[2] 2015. A Next-Generation Smart Contract and Decentralized Application Plat-
form. Retrieved August 10, 2018 from https://github.com/ethereum/wiki/wiki/
White-Paper

[3] JS. Banerjee, D. Goswami, and S. Nandi. 2014. OPNET: A New Paradigm for
Simulation of Advanced Communication Systems. (2014), 319-328.

[4] A. Montresor and M. Jelasity. 2009. PeerSim: A scalable P2P simulator. , 99-
100 pages.

[5] L. Stoykov, K. Zhang, and H. A. Jacobsen. 2017. VIBES: Fast Blockchain Simu-
lations for Large-scale Peer-to-peer Networks: Demo. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Posters and Demos. ACM, 19-20.

https://github.com/i13-msrg/evibes
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Smart Contract Execution
	5 Software Demonstration
	6 Conclusions
	Acknowledgments
	References

