
Poster Abstract: OrderlessFile: A CRDT-Enabled Permissioned

Blockchain for File Storage

Pezhman Nasirifard
Technical University of Munich

Munich, Germany
p.nasirifard@tum.de

RubenMayer
Technical University of Munich

Munich, Germany
ruben.mayer@tum.de

Hans-Arno Jacobsen
University of Toronto
Toronto, Canada

jacobsen@eecg.toronto.edu

ABSTRACT

Cloud storage has gained popularity as an affordable and available
cloud-based file storage. However, despite its apparent advantages,
clients must rely on cloud providers to safely and securely store
the files. A few blockchain-based file storage systems have been
introduced as trusted alternatives. However, their limited scalability
and use of off-chain storage restrict their applicability. To address
these issues, we introduce OrderlessFile, a CRDT-based on-chain
permissioned blockchain for file storage.

CCS CONCEPTS

•Computersystemsorganization→Distributedarchitectures;
• Information systems→ Information storage systems.

KEYWORDS

Blockchain, Conflict-free Replicated Data Type, File Storage

ACMReference Format:

Pezhman Nasirifard, RubenMayer, and Hans-Arno Jacobsen. 2022. Poster
Abstract: OrderlessFile: A CRDT-Enabled Permissioned Blockchain for
File Storage. In 23rd International Middleware Conference Demos and Posters
(Middleware ’22), November 7–11, 2022, Quebec, QC, Canada.ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3565386.3565491

1 INTRODUCTION

In recent years cloud storage services have become an integral part
of cloud ecosystems [2]. Although cloud storage offers affordable
and available Storage-as-a-Service, most cloud providers lack trans-
parency on the privacy and security of stored files [14]. Clients must
trust the service-level agreements and be confident that providers
do not tamper with data and store them safely. Several blockchain-
based distributed and decentralized file storage systems have been
proposed to address these issues [2, 14]. Although blockchain-based
file storage systems are more secure and private than conventional
cloud providers, several existing systems are based on Proof-of-Work-
based (PoW) solutions, such as Ethereum [5, 13, 14] and suffer from
the common scalability issues of PoW-based protocols. Furthermore,
due to the storage limitations on blockchains, exiting solutions use
various off-chain systems such as InterPlanetary File System (IPFS),
which might present other security and privacy issues.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9931-9/22/11. . . $15.00
https://doi.org/10.1145/3565386.3565491

To address the scalability issues and limitations of stored file size,
we introduceOrderlessFile, a private and distributed permissioned
blockchain-based file storage. OrderlessFile offers a scalable and
safe protocol for replicating and storing encryptedfileswhereByzan-
tineparticipants cannot tamperwithdata andviolate its integrity.We
also introduce FileCRDT, a customized Conflict-free Replicated Data
Type (CRDT) [10] for enabling the clients to split files into shards that
are stored and replicated on OrderlessFile. Like conventional file
storage, OrderlessFile can store various types of data from IoT to
extensive electric vehicles, andmachine learning datasets [2, 4, 9, 14].

2 FILECRDT: A CRDT FOR FILE STORAGE

Keys:

Values:

Shard1 Shardn.....

VersionP-1 VersionP

[Data1] [Data1]

VersionP-1

[Datan]

FileCRDT

Figure 1: Internal structure of

FileCRDT.

OrderlessFileuses File-
CRDT for sharding and
storing files. The struc-
tureof FileCRDTisshown
in Figure 1. Each file
stored onOrderlessFile
has a unique identifier
and is versioned based
on a logical clock tracked
by the client. The logical
clock indicates the file’s

version number, and the client increments it with every new file
version. FileCRDT is a nested data structure in the format of key-
value pairs. Depending on the file size and the OrderlessFile’s
configuration settings, the file is split into shards, where each shard
is stored as a key-value pair in an instance of FileCRDT. The key is
the shard’s identifier which is unique per file. The value is another
key-value data structure, where the key is the file’s version, and the
value is a multi-value register [3] containing the shard data. The
purpose of keeping track of the versions is to resolve the conflicting
updates sent by the client and prevent data corruption as the shards
are gradually transmitted to be stored.

3 ARCHITECTUREANDPROTOCOL

OrderlessFile consists of several organizations and clients. The
organizations are responsible for receiving and storing files from
clients. The clients can communicatewith every non-failed organiza-
tion andupload anddownloadfiles. For uploadingfiles, clients follow
a two-phase endorsement-storage protocol, as shown in Figure 2.

Endorsement Phase –Depending on the file size and themaximum
allowed shard size, the client first splits the file into shards. The
allowed shard size is a global system configuration setting. For every
shard,a shardsignatureSSm=Hash(<𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑆ℎ𝑎𝑟𝑑𝑚),𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑝 >)
is created based on the shard’s encrypted data and the file’s current
version. SSm is sent to the organizations (Step 1 in Figure 2). The

https://doi.org/10.1145/3565386.3565491
https://doi.org/10.1145/3565386.3565491

Middleware ’22, November 7–11, 2022,Quebec, QC, Canada P. Nasirifard, et al.

 Append-
only Log

 Append-
only Log

OrganizationL+1

 Append-
only Log

OrganizationL

OrganizationL-1

Shard0

Shardn

File

SSm

SSm

SSm

Endorsed
 SSm

Endorsed

 SSm

OrganizationL

Encrypted

Shardm

Endorsed

SSm
 Append-

only Log

Blockk

RCPTi

Encrypted

Shardm

FileCRDTClient

Step 1

Step 2

Step 3

Step 4

........

TSi

Endorsement Phase Storage Phase

Endorsed

SSm

Endorsed

SSm

Versionp

TSi
Endorsed

 SSm

Figure 2:Workflow for uploading files.

client sends SSm to all organizations or a subset of them, depending
on the replication factor intended for storing the file. The organiza-
tion signs SSmwith its private key based on public-key cryptography
and sends the response (a.k.a endorsements), to the client (Step 2).

Storage Phase –The client waits to receive the endorsements from
organizations and verifies their validity by using the organization’s
public key. If every endorsement is valid, the client creates a transac-
tion TSi that contains the endorsements, the encrypted shard data,
the shard’s identifier, and the file’s version. The client sends the
transaction to the same organizations (Step 3). The organization
appends the transaction to an append-only hash-chain log. The orga-
nization first creates a blockBlockk =<Hash(TSi),Hash(Blockk−1)>,
which contains the hash value of TSi and the hash of the previous
block and appends the block to the log. Afterward, the organization
validates every endorsement in TSi to ensure that the organiza-
tion endorsed the identical SSm. If the transaction is valid, a receipt
RCPTi =HashAndSign(Blockk,Valid), is created and sent to the client
(Step 4). For an invalid transaction, the organization sends a rejection.
Since the created block contains the hash of the transaction and the
previous block, the Byzantine organization cannot tamper with the
content of the transactionwithout invalidating the receipt of TSi and
the previous transactions. IfTSi is valid, the organization updates the
instance of FileCRDT that contains the file. The shard in FileCRDT
is modified based on the shard’s identifier and the file’s version. If a
conflicting shard with an identical version exists, the shard data is
added to the multi-value register, and the client decides which data
to use. Finally, the organization iterates through the shards to verify
whether every shard has aVersionp key. IfVersionp key exits in every
shard in the FileCRDT instance, the key-value pairs with the key
Versionp−1 are removed to free up disk space.

For downloading a file, the client sends a request to an organiza-
tion that stores the file with the file identifier and receives the shards
with the latest version.

We open-sourced the code 1 and published an extended paper on
the permissioned blockchain part of the system [7, 8].

4 EVALUATION

For evaluating OrderlessFile, we deployed a network of 16 orga-
nizations with 1000 clients downloading and uploading files con-
currently. The workload consists of half download and half upload
transactions uniformly distributed during the experiments. Each

1https://github.com/orderlesschain/orderlessfile

client owns one file consisting of ten shards with a replication fac-
tor of two. We gradually increased the maximum shard size from
25KB to 100KB. The average latency to the throughput of upload and
download transactions is shown in Figure 3. For uploading trans-
actions, latency remains constant for smaller shard sizes. However,
the latency increases for larger shard sizes as they result in larger
transactions requiring more time to be transmitted, and the over-
head for writing larger shards to the disk increases. The latency for
download requests increases as throughput increases since the load
on the bandwidth increases.

0 500 1,000
0

500

1,000

(a) Upload throughput (tps)

La
te
nc
y
(m

s)

25KB
50KB
75KB
100KB

0 500 1,000
0

20

40

60

80

(b) Download throughput (tps)

Figure 3: Latency to throughput for an increasing shard size.

5 RELATEDWORK

Some studies proposed CRDT-based decentralized file storage in
non-Byzantine distributed environments [11, 12]. However, the ap-
plicability of CRDT-enabled blockchains for file storage has received
limited attention [6]. A few works proposed solutions for decentral-
ized blockchain-based file storage [1, 5, 13]. Stroj [5] is an Ethereum-
based cloud storage where providers can rent out their excess hard-
ware and bandwidth to the clients. Sia [13] also offers a PoW-based
solution for providers to rent out their excess hardware. FileCoin [1]
provides blockchain-based off-chain storage using IPFS.

REFERENCES

[1] J. Benet and N. Greco. 2018. Filecoin: A Decentralized Storage Network. (2018).
[2] N. Deepa, Q.-V. Pham, D. C. Nguyen, and et al. 2022. A Survey on Blockchain for

Big Data: Approaches, Opportunities, and Future Directions. FGCS (2022).
[3] M.KleppmannandA.R.Beresford. 2017. AConflict-freeReplicated JSONDatatype.

IEEE TPDS (2017).
[4] F. Kohlbrenner, P. Nasirifard, C. Löbel, and H.-A. Jacobsen. 2019. A Blockchain-

Based Payment and Validity Check System for Vehicle Services. InMiddleware
Demos and Posters.

[5] Storj Labs. 2018. Storj: A Decentralized Cloud Storage Network Framework.
[6] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2019. FabricCRDT: A Conflict-free

Replicated Datatypes Approach to Permissioned Blockchains. InMiddleware.
[7] P.Nasirifard,R.Mayer, andH.-A. Jacobsen. 2022. OrderlessChain:ACRDT-Enabled

BlockchainWithout Total Global Order of Transactions. InMiddleware Demos and
Posters.

[8] P.Nasirifard, R.Mayer, andH.-A. Jacobsen. 2022. OrderlessChain:DoPermissioned
Blockchains Need Total Global Order of Transactions? CoRR (2022). https:
//doi.org/10.48550/arXiv.2210.01477 arXiv:2210.01477

[9] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2022. OrderlessFL: A CRDT-Enabled
PermissionedBlockchain forFederatedLearning. InMiddlewareDemosandPosters.

[10] M.Shapiro,N.Preguiça,C.Baquero, andM.Zawirski. 2011. Conflict-freeReplicated
Data Types. In SSS.

[11] V. Tao, M. Shapiro, and V. Rancurel. 2015. Merging Semantics for Conflict Updates
in Geo-distributed File Systems. In ACM SYSTOR.

[12] R. Vaillant, D. Vasilas, M. Shapiro, and T. L. Nguyen. 2021. CRDTs for Truly
Concurrent File Systems. InACMHotStorageWorkshop.

[13] D. Vorick and L. Champine. 2014. Sia: Simple Decentralized Storage. (2014).
[14] N. Zahed Benisi, M. Aminian, and B. Javadi. 2020. Blockchain-based Decentralized

Storage Networks: A Survey. J. Netw. Comput. Appl. (2020).

https://github.com/orderlesschain/orderlessfile
https://doi.org/10.48550/arXiv.2210.01477
https://doi.org/10.48550/arXiv.2210.01477
https://arxiv.org/abs/2210.01477

	Abstract
	1 Introduction
	2 FileCRDT: A CRDT for File Storage
	3 Architecture and Protocol
	4 Evaluation
	5 Related Work
	References

