
Poster Abstract:OrderlessFL: A CRDT-Enabled Permissioned

Blockchain for Federated Learning

Pezhman Nasirifard
Technical University of Munich

Munich, Germany
p.nasirifard@tum.de

RubenMayer
Technical University of Munich

Munich, Germany
ruben.mayer@tum.de

Hans-Arno Jacobsen
University of Toronto
Toronto, Canada

jacobsen@eecg.toronto.edu

ABSTRACT

Industries produce a large amount of data that can improve Ma-
chine Learning models. However, due to privacy issues, the data
cannot be shared. Several Federated Learning (FL) systems have been
introduced as private alternatives without considering Byzantine
actors.Also, these systemsare affectedby thegradient stalenessprob-
lem. Several blockchain-based FL systems are introduced to address
Byzantine actors,which rely onProof-of-Work-based (PoW) protocols
and suffer from their limitations. We introduceOrderlessFL, a safe
permissioned blockchain-based FL system using flCRDT, a CRDT
for concurrent ML training and mitigating gradient staleness.

CCS CONCEPTS

•Computersystemsorganization→Distributedarchitectures;
•Computingmethodologies→Machine learning.

KEYWORDS

Conflict-free Replicated Data Type, Federated Learning, Blockchain

ACMReference Format:

Pezhman Nasirifard, RubenMayer, and Hans-Arno Jacobsen. 2022. Poster
Abstract:OrderlessFL: A CRDT-Enabled Permissioned Blockchain for Fed-
erated Learning. In 23rd International Middleware Conference Demos and
Posters (Middleware ’22), November 7–11, 2022, Quebec, QC, Canada. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3565386.3565487

1 INTRODUCTION

Industries produce a large amount of data that can be used for im-
provingMachine Learning (ML)models [11]. However, the raw data
can often not be shared among organizations for privacy reasons.
Hence, Federated Learning (FL) has gained popularity as a solution
to privacy-preserving ML [3]. A synchronous FL system consists of
several workers and a central Parameter Server (PS) [1]. The workers
receive a globalMLmodel fromPS and train themodel based on their
local data. The PS aggregates the local updateswith the globalmodel.

Despite the enhanced privacy of FL, the central and potentially
Byzantine PS can jeopardize the system [8]. Several Proof-of-Work-
based (PoW) blockchains for FL have been introduced to handle a
Byzantine PS [11]. However, PoWhas performance limitations [2, 5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9931-9/22/11. . . $15.00
https://doi.org/10.1145/3565386.3565487

Also, due to the blockchain’s storage limitation, they depend on
off-chain storage solutions, which could potentially be Byzantine.

Furthermore, the performance of synchronous FL is affected by
slowworkers, and asynchronous FL is affected by gradient staleness,
where the workers train on an outdated global model [10]. Training
a model using FL shares similar problems with the concurrent reads
and writes in distributed computing. One technique for addressing
the problems is Conflict-free Replicated Data Types (CRDTs) [9].

In this work, we introduce flCRDT, a novel CRDT enabling the
concurrent and asynchronous aggregation of models in FL. flCRDT
uses the properties of CRDTs tomitigate the gradient staleness prob-
lem. We also introduceOrderlessFL, a permissioned blockchain-
based FL system using flCRDT. Our system offers a safe protocol
for storing and aggregating models where Byzantine actors cannot
tamper with the models.

2 ARCHITECTUREAND FL PROTOCOL

OrderlessFL is a permissioned blockchain consisting of organi-
zations and workers. Organizations act as PS, store and distribute
models, and receive and aggregate updates. The workers can com-
municate with every non-failed organization. The system uses the
following training-aggregation asynchronous FL protocol, shown
in Figure 1. We open-sourced the system’s code 1. We also published
an extended paper on the blockchain part of the system [6, 7].

Organizationp+1

Organizationp

Organizationp-1

Training

MSign

Organizationp

 Mδ
 MVersion
 MClock

MSign Append-
only Log

Blockh

RCPT
Worker

Step 2

Step 4

Step 5

TS

Training Phase Aggregation Phase

MSign MSign

TS
 Log

 Log

 Log

MSign

MSign

MSign

MSign

MGlobal
 MVersion

Step 3

Step 1

Data

Figure 1:Workflow for training amodel.

Training Phase – The worker first contacts any organization to
receive <MGlobal,MVersion>, the weights of the global model and the
model’s current version (Step 1 in Figure 1). The model architecture
and learning algorithm are global system configuration settings. The
worker initializes a model withMGlobal and trains the model using
its local data. Afterward, M𝛿 =MLocal−MGlobal , the weight differ-
ence between the locally trained and global models, is calculated.
The worker also keeps track of a logical clockMClock , incrementing
it with every update. Then, the worker creates a model signature
1https://github.com/orderlesschain/orderlessfl

https://doi.org/10.1145/3565386.3565487
https://doi.org/10.1145/3565386.3565487
https://github.com/orderlesschain/orderlessfl

Middleware ’22, November 7–11, 2022,Quebec, QC, Canada P. Nasirifard, et al.

MSign=Hash(<M𝛿 ,MVersion,MClock >) and sends it to the organiza-
tions (Step 2). The organization signs MSign with its private key
based on public-key cryptography and sends the signed response,
also known as an endorsement, to the worker (Step 3).

AggregationPhase–Theworkerwaits to receive theendorsements
from organizations and verifies the signatures’ validity. If every en-
dorsement is valid, a transaction TS that contains the endorsements
and model update is created and sent to the organizations (Step 4).
The organization appends TS to its append-only hash-chain log by
creatingablockBlockh=<Hash(TS,Blockh−1)>,whichalsocontains
the hash of the previous block, and appends the block to the log. The
organization verifies whether every endorsement in TS is valid. This
ensures that every organization has received identical data from the
workerandpreventsByzantinebehavior.Asigned receipt containing
the block’s hash for valid transactions is sent to theworker (Step 5). A
signed rejection is sent otherwise. As the receipt contains the block’s
hash value which is also dependent on the previous blocks, any
Byzantine modification of the organization invalidates the receipts
of TS and other transactions. Finally, the organization aggregates
M𝛿 of the valid transaction into the global model, explained below.

Key:

Value:

Neuron1 Neuronn

[weight1, .., weightm] [weight1, .., weighto]

Model Version Clock Workers Clock: [Worker1, ... Workerl]

Layer1:

Layer2:

Layer3:

Neurons and Weights

Neurons and Weights

Layer1 Layer2Layer3

....

Figure 2: Modeling a DNNwith flCRDT.

Algorithm 1:Aggregating the updates.
1 AggregateToGlobalModel (MGlobal ,M𝛿 ,MVersion,MClock,WorkerID)
2 if MClock−MGlobal .WorkerClocks [WorkerID]==1 then
3 MGlobal .Version+=1
4 MGlobal .WorkerClocks [WorkerID]+=1
5 StalenessPenalty= (MGlobal .Version−MVersion)−1
6 UpdateRate=StalenessPenalty∗MGlobal .WorkerClocks.Length−1

7 foreach layer inMW𝛿 .Layers do
8 MGlobal .Layers [layer]+=M𝛿 .Layers [layer]∗UpdateRate
9 else

10 MGlobal .EnqueueUpdate (<M𝛿 ,MVersion,MClock,WorkerID>)
11 MGlobal .ProcessQueuedUpdates ()

3 FLCRDT: THE FEDERATED LEARNINGCRDT

We introduce flCRDT, a nested CRDT for modeling a wide range
of MLmodels. In this work, we only discuss modeling a Deep Neural
Network (DNN), as shown in Figure 2. A DNNmodel consists of sev-
eral layers, with every layer consisting of several neurons with their
weights.AsflCRDT is anesteddata structure, the layers andneurons
can be modeled as nested data structures in an instance of flCRDT.
The root of flCRDT is amap consisting of key-value pairs,where the
key is a unique identifier of the layer, and the value consists of nested
maps containing other layers or the neurons’ weights. flCRDT also
contains two logical clocks: amodel clockandaworkers’ vector clock.
The model clock stores the model version and increments it with
every update. Theworkers’ vector clock stores the clocks of workers.

Algorithm 1 displays our approach used by organizations to ag-
gregate M𝛿 with the global model. The organization proceeds to

aggregate M𝛿 if it has observed all previous updates sent by the
worker (Line 2). Otherwise, the update is queued (Line 10). Before
updating the model, the model version and the worker’s clock are
incremented (Lines 3 and 4). For mitigating the gradient staleness,
a staleness penalty is calculated based on the current model version
ofMGlobal and the global model used by the worker (Line 5). We cal-
culate an update rate based on the staleness penalty and the number
of workers in the workers’ vector clock (Line 6), iterate over the
layers, and aggregate the updates (Lines 7 and 8). Finally, the queued
updates are processed following the same procedure (Line 11).

4 EVALUATION

0 100 200 300
0

2

4

6

8

·104

Throughput (tps)

La
te
nc
y
(m

s)

102KParam
203KParam
305KParam

Figure3: Latency to throughput.

Wedeployed eight organi-
zations and evaluated the
protocol regarding aggre-
gating updates. We grad-
ually increased the trans-
actions arrival rate from
50 tps to 400 tps on three
models with an increas-
ing number of trainable
parameters. Each transac-
tion submits a pretrained
update. The model is a
convolutionalDNNtrained
on the MNIST dataset
using TensorFlow/Keras.

The average latency to throughput is shown in Figure 3. We observe
that the latency gradually increases due to the CPU saturation on
our experimental setup, which causes transactions to be queued.
5 RELATEDWORK

Although the applicability of CRDTs in other fields has been stud-
ied [5], its applicability to FL has received limited attention. Studies
have proposed asynchronous FL protocols [3, 10] that use logical
clocks to bound gradient staleness without considering the Byzan-
tine actors. Various blockchain and PoW-based FL systems, such as
BlockFlow andBAFFLE, have been proposed to ensure trust [4, 8, 11].
REFERENCES

[1] K.Bonawitz,H.Eichner,W.Grieskamp,and etal.2019. TowardsFederatedLearning
at Scale: System Design. PMLR (2019).

[2] F. Kohlbrenner, P. Nasirifard, C. Löbel, and H.-A. Jacobsen. 2019. A Blockchain-
Based Payment and Validity Check System for Vehicle Services. InMiddleware
Demos and Posters.

[3] Q. Li, Z. Wen, Z. Wu, and et al. 2021. A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data Privacy and Protection. IEEE TKDE (2021).

[4] V. Mugunthan, R. Rahman, and L. Kagal. 2020. BlockFLow: An Accountable and
Privacy-Preserving Solution for Federated Learning. CoRR (2020).

[5] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2019. FabricCRDT: A Conflict-free
Replicated Datatypes Approach to Permissioned Blockchains. InMiddleware.

[6] P.Nasirifard,R.Mayer, andH.-A. Jacobsen. 2022. OrderlessChain:ACRDT-Enabled
BlockchainWithout Total Global Order of Transactions. InMiddleware Demos and
Posters.

[7] P.Nasirifard, R.Mayer, andH.-A. Jacobsen. 2022. OrderlessChain:DoPermissioned
Blockchains Need Total Global Order of Transactions? CoRR (2022). https:
//doi.org/10.48550/arXiv.2210.01477 arXiv:2210.01477

[8] P. Ramanan and K. Nakayama. 2020. BAFFLE : Blockchain Based Aggregator Free
Federated Learning. In IEEE Blockchain.

[9] M. Shapiro, N. Preguiça, C. Baquero, andM. Zawirski. 2011. Conflict-Free Repli-
cated Data Types. In SSS.

[10] W. Zhang, S. Gupta, X. Lian, and J. Liu. 2016. Staleness-Aware Async-SGD for
Distributed Deep Learning. In IJCAI.

[11] W. Zhilin and H. Qin. 2021. Blockchain-based Federated Learning: A Comprehen-
sive Survey. CoRR (2021). arXiv:2110.02182

https://doi.org/10.48550/arXiv.2210.01477
https://doi.org/10.48550/arXiv.2210.01477
https://arxiv.org/abs/2210.01477
https://arxiv.org/abs/2110.02182

	Abstract
	1 Introduction
	2 Architecture and FL Protocol
	3 flCRDT: The Federated Learning CRDT
	4 Evaluation
	5 Related Work
	References

