
OrderlessChain: A CRDT-based BFT Coordination-free
BlockchainWithout Global Order of Transactions

Pezhman Nasirifard
Technical University of Munich

Germany
p.nasirifard@tum.de

RubenMayer
University of Bayreuth

Germany
ruben.mayer@uni-bayreuth.de

Hans-Arno Jacobsen
University of Toronto

Canada
jacobsen@eecg.toronto.edu

ABSTRACT

Existing permissioned blockchains often rely on coordination-based
consensus protocols to ensure the safe execution of applications
in a Byzantine environment. Furthermore, the protocols serialize
the transactions by ordering them in a global order. The serializ-
ability preserves the correctness of the application’s state stored
on the blockchain. However, coordination-based protocols limit
the throughput and scalability and induce high latency. In contrast,
application-level correctness requirements exist that are not depen-
dent on the order of transactions, known as invariant-confluence
(I-confluence). The I-confluent applications can execute transactions
in a coordination-free manner, benefiting from the improved scal-
ability compared to the coordination-based approaches. The safety
and liveness of I-confluent applications are studied in non-Byzantine
environments, but the correct executionof suchapplications remains
a challenge in Byzantine coordination-free environments. We intro-
duce OrderlessChain, a novel permissioned blockchain based on a
novel BFT coordination-free protocol for the safe and live execution
of I-confluent applications in a Byzantine environment. We imple-
mented a prototype of our system, and our evaluation results show
that our coordination-free approach performs significantly better
than coordination-based blockchains.

CCS CONCEPTS

• Computer systems organization → Distributed architec-

tures.

KEYWORDS

Permissioned Blockchain, CRDT, I-confluence, Byzantine Fault Tol-
erance, Coordination-free

ACMReference Format:

Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2023. Or-
derlessChain: A CRDT-based BFT Coordination-free BlockchainWithout
Global Order of Transactions. In 24th International Middleware Conference
(Middleware ’23), December 11–15, 2023, Bologna, Italy.ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3590140.3629111

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0177-1/23/12. . . $15.00
https://doi.org/10.1145/3590140.3629111

1 INTRODUCTION

The main property contributing to blockchains’ popularity is the
trusted execution of transactions in a trustless, decentralized envi-
ronment. To offer trust and prevent Byzantine behavior, blockchains
use consensus protocols, such as the Proof-of-Work-based (PoW) pro-
tocol used in Bitcoin [53]. Another essential property of consensus
protocols is to enable the system to agree on the total global order of
transactions for a serialized execution. The serializability is required
to preserve the correctness of the application’s state stored on the
blockchain. For example, serialization prevents a user’s negative
account balance in the case of Bitcoin, as every node sequentially
executes the transactions in the same order. However, the consen-
sus protocols in several blockchains are severe bottlenecks to their
throughput and latency [35, 68].

In contrast to public blockchains, permissioned blockchains are
only accessible by authenticated and authorized participants [11, 68].
Although the participants’ identity is known, they do not trust each
other. Permissioned blockchains, such as Hyperledger Fabric (Fab-
ric) [2], take advantage of their permissioned property to implement
more efficient coordination-based consensus protocols. However,
the coordination-based nature of these protocols remains a bottle-
neck [14, 15, 71].

Decreasing coordination plays a vital role in improving the scala-
bility of any distributed system [4]. A coordination-free blockchain
could enable the concurrent execution of transactions, leading to
improved throughput and latency. However, simply eliminating
the coordination may jeopardize the application’s correctness. For
example, a payment processing application may require rejecting
transactions that result innegative account balances.A coordination-
free blockchain cannot preserve this [4, 38].

In contrast, there exist application-level correctness requirements
that can be preserved in a coordination-free distributed system,
which are known as Invariant-Confluent (I-confluent) invariant con-
ditions [4]. For example, transactions that only deposit funds to
an account can be executed without coordination. In other words,
the I-confluent transactions can be processed in any order while
preserving application-level correctness, and the final state of the
application is independent of the order of the transactions. One
technique that can create I-confluent transactions is Conflict-free
Replicated Data Types (CRDTs) [70]. CRDTs are abstract data types
that converge to the same state in a coordination-free environment.

Bailis et al. [4] demonstrated that unordered transactions preserve
the I-confluent invariants of applications in non-Byzantine and even-
tually consistent environments. In other words, applications with I-
confluent invariants are safe and live in non-Byzantine coordination-
free environments. The authors also showed coordination-free ap-
proaches’ improved scalability, throughput, and latency. However,

https://doi.org/10.1145/3590140.3629111
https://doi.org/10.1145/3590140.3629111

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

preserving the safety and liveness of applications in aByzantine envi-
ronmentdependsonpayingahighcoordinationcost inother systems
and is challenging without coordination [14, 25, 35, 68, 71, 83]. By
providing a BFT coordination-free environment where I-confluent
applications remain safe and live, we benefit from improved perfor-
mance and scalabilitywhile ensuring trust in a trustless environment.
In this work, we present OrderlessChain, a coordination-free per-
missioned blockchain without a total global order of transactions.
OrderlessChain uses the properties of permissioned blockchains
and CRDTs to offer an innovative BFT coordination-free two-phase
execute-commit protocol for creating safe and live applications. We
also built five applications on OrderlessChain to show its practi-
cability.

In summary, we offer the following contributions in this paper:
(1) We introduce a novel BFT coordination-free protocol without

requiring the nodes to coordinate to reach a consensus. We
also offer proof of its BFT property.

(2) WepresentOrderlessChain,anovelpermissionedblockchain
based on our BFT protocol, capable of executing safe and live
applications. Our system eliminates the coordination over-
head and significantly improves the throughput and scalabil-
ity over coordination-based blockchains.

(3) We present a novel approach for creating Turing-complete
blockchain applications based onCRDTs,which preserves the
I-confluent invariants of applications in a coordination-free
Byzantine environment and ismore scalable than the existing
CRDT-enabled blockchain.

(4) We implement a prototype of OrderlessChain and demon-
strate our approach’s improved throughput and latency for
I-confluent applications compared to coordination-based per-
missioned blockchains.

The remainder of the paper is organized as follows. First, we pro-
vide a background on I-confluence and CRDTs in Section 2 followed
by our systemmodel in Section 3. Then, we explain our protocol in
Section 4. We discuss the applications of OrderlessChain and its
implementation in Sections 5 and 6.We also explain our approach for
preserving application-level correctness requirements in Section 7,
and the effects of Byzantine participants in Section 8. We present
evaluations in Section 9 and review related work in Section 10.

2 BACKGROUND

Invariant Conditions and Invariant Confluence – Different
applications have different correctness requirements. For example,
a banking application may be required to prevent the customers’
account balances from dropping below zero. Developers specify the
correctness of an application by defining a set of invariant conditions
{I1,...,Is} on the application’s state. Each Ij represents a requirement
that nodes must preserve during the application’s lifecycle. Pre-
serving invariants in a distributed systemwith globally serialized
transactions is relatively straightforward. Provided that each transac-
tion preserves the invariants, serialization enables the nodes to apply
the transactions in a sequentially isolated manner and preserve the
invariants. However, serialization comes at a high coordination cost.
In a coordination-free distributed system, the nodes may receive the
transactions in different orders. Hence, preserving invariants is chal-
lenging. For example, a node that stores the account balance of a cus-
tomerwith an account balance of {Balance :100} can accept only one

of the withdrawal transactions ofWithdraw(50) andWithdraw(60).
Applying both transactions would result in a negative account bal-
ance and violates the application’s invariants.Without coordination,
the nodes cannot agree to accept one of the two transactions.

Bailis et al. [4] studied preserving invariants in a non-Byzantine
coordination-free distributed systemand introduced thenotionof In-
variant Confluence (I-confluence). A set of transactions {TS1,...,TSm}
is I-confluent with regard to an invariant condition Ij , if the trans-
actions can be applied in different orders on different nodes while
preserving Ij . Consider thementionedwithdrawal transactions as an
example of a non-I-confluent transaction set. However, two deposit
transactions Deposit (50) and Deposit (60) are I-confluent, as apply-
ing these transactions in anyorderondifferentnodesdoesnot violate
the non-negative balance invariant condition. Hence, the I-confluent
transactions must have these two properties: (1) Commutativity:
The transactions can be applied in any order. (2) Convergence: The
final state is independent on the order of transactions. Bailis et al.
proved that only I-confluent transactions could be executed on a
coordination-free distributed system, and non-I-confluent transac-
tions require coordination among the system’s nodes [4].

Conflict-free Replicated Data Types – One available tech-
nique that provides commutative and convergent transactions as
I-confluence requires isConflict-freeReplicatedDataTypes (CRDTs).
CRDTs represent abstract data types that converge to the same state
in the presence of concurrent transactions in a coordination-free
distributed system [70]. These data types encapsulate common data
structures such as maps and provide APIs for reading andmodifying
their values. Since concurrent transactions can result in conflicting
values, CRDTs use built-in mechanisms to resolve conflicts without
coordination. Shapiro et al. [70] formalized CRDTs and proved their
strong eventual consistency property (SEC) in an eventually con-
sistent system. An SEC system has two requirements: (1) Eventual
delivery of transactions: If a transaction is delivered to one correct
node, then all correct nodes will eventually receive the transaction.
(2) Strong convergence of nodes: If the same set of transactions is
applied on every correct node, then the nodes’ state immediately
converges to the same state [70].

CRDTs synchronize among different nodes through propagat-
ing commutative transactions [44]. When extending common data
structures with CRDT features, the transactions may inherently be
commutative or not. For example, a counter is easily modeled as a
CRDT since increment transactions are intrinsically commutative.
However, modifications for several other data types are not commu-
tative. For instance, assigning a value to a single-value register is not
inherently commutative. For converting a register to a CRDT, the
register needs to be extended with metadata, defining its behavior
in the presence of concurrent modifications. This is achieved with
the help of the happened-before relation [70] that defines the causal
order between two events based on logical clocks [41]. The theoret-
ical foundation for defining the requirements of several CRDTs has
been studied thoroughly [37, 64].

3 SYSTEMMODEL

SystemModel –OrderlessChain is a strongly eventually consis-
tent, asynchronous permissioned blockchain. An OrderlessChain
network consists of a set of organizations {O1,...,On} and a set of

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

clients {C1,...,Cr }. Organizations can communicate with other non-
failed organizations by sending and receiving messages. A unique
identifier is assigned to each organization and client. The identity of
each organization is known to every other organization and client
in the network. An organization represents entities that range from
large corporations to small businesses or even individuals. The pur-
pose of organizations is to define trust boundaries in the system.
Although the organizations’ identity is known to each other, the
organizations do not necessarily trust each other.

Running Example – To better convey our system model and
design, we create a voting application to which we refer throughout
the paper. Each voter Voteri can vote for one party among the can-
didate parties in {P1,...,Pn}. The network consists of n organizations,
each representing one distinct party. Each organization receives and
stores votes from voters. We consider the application correct if each
voter votes for at most one party. We chose this use case since vot-
ing applications are among popular blockchain use cases [30]. Also,
studies have shown that coordination in such highly concurrent
use cases is a bottleneck [71]. For example, on Fabric, up to 90% of
transactions in a voting application may fail [14].

Application’sWorld State – Each organization stores a replica
of the application’s state as a set of key-value pairs represented
by STOi , which represents the application state at organization Oi .
Since OrderlessChain is an SEC system, the replicated applica-
tion states STO1 ,...,STOn at organizationsO1,...,On may diverge from
each other, but will eventually converge to the same state. At any
given point in time, we define the application’s world state STApp as
STApp =∪n

i=1STOi , that is as the union of the application state at all
organizations where the values of identical keys are merged based
on the techniques discussed in this paper.

Invariant Conditions –An application’s correctness is imposed
by the developer by defining a set of invariant conditions {I1,...,Is} on
STApp . Each invariant Ij specifies a constraint over STApp . We define
the application correctness as follows:

Definition 3.1. STApp Correctness. Let STApp be the applica-
tion’sworld state thatdoesnot violate the invariant conditions {I1,...,Is}.
Let the transaction set {TS1,...,TSm} be I-confluent with regard to
{I1,...,Is}. Then, committing the transactions {TS1,...,TSm} does not
violate any invariant conditions {I1,...,Is} over STApp .

Application’s Endorsement Policy – The developers specify
the endorsement policy for the application. The endorsement policy
specifies which organizations must sign and commit the transac-
tions. The process of obtaining the signature is called endorsing. The
application’s endorsement policy has the format EP : {qof n}, where
n is the number of organizations in the system, and q is the min-
imum number of organizations required for endorsing as well as
committing a transaction. In other words, the endorsement policy
determines the trust requirements of the application and enables the
developer to adjust the amount of trust required.

In the context of our voting example, consider an election with
four participating parties P1,P2,P3,P4 where each party is repre-
sented by a corresponding organization OP1 ,OP2 ,OP3 ,OP4 . Consider
the following two possible endorsement policies: EP1 : {2 of 4} and
EP2 : {4 of 4}. EP1 requires that votes are endorsed and committed
by at least two of the four organizations. EP2 indicates that all four

organizations must endorse and commit the voter’s vote. Further-
more, we identify one invariant condition:maximally one vote per
voter. The application is correct if themaximally one vote per voter
invariant is preserved over STApp and committing transactions do
not violate this invariant.

TransactionModel –A transaction is valid as follows:

Definition 3.2. Transaction Validity. Let the application’s en-
dorsement policy be EP : {qof n}. Let STApp be correct concerning the
invariant conditions. Let the transaction TSi be I-confluent concerning
the invariant conditions. Then, TSi is valid if and only if it satisfies
these two requirements: (1) Signature validity: TSi is endorsed by at
least q organizations and the client signed the transaction. (2) Invariant
conditions validity: Applying TSi does not violate any invariants.

We define the transaction TSi to be committed as follows:

Definition 3.3. Committed Transaction. Let the application’s
endorsement policy be EP : {qof n}. Let the transaction TSi be valid.
Then,TSi is successfully committed ifandonly ifat leastq organizations
individually process and commit the transaction successfully.

For the voting example with EP1 : {2 of 4}, a transaction is valid if
it is signed by the client and is endorsed by at least two organizations.
Additionally, the valid transaction must not violate themaximally
one vote per voter invariant. Also, at least two organizations must
commit a valid transaction.

FailureModel –We consider the organizations and clients po-
tentially Byzantine. Byzantine organizations or clients can fail ar-
bitrarily. We consider an organization non-faulty if and only if the
organization processes every transaction according to the Order-
lessChain’s protocol. The transactions can be delivered in any order
differing from the sent order; they may also be duplicated, lost, or
corrupted during transmission. The safety and liveness properties
of applications running on OrderlessChain are defined as follows:

Definition 3.4. Safety.Only valid transactions are successfully
committed.

Definition 3.5. Liveness. Every valid transaction is eventually
successfully committed.

We have two kinds of failures: (1) Signature failure:When a trans-
action does not receive the required endorsements based on the
endorsement policy, or the client’s signature is invalid. (2)Organiza-
tion failure: Any Byzantine failures of the organizations, including
crash and omission failures and the organizations’ arbitrary behav-
ior, such as intentionally jeopardizing the system through tampering
with messages, forging signatures, or software bugs.

Intuitively speaking, consider the two possible endorsement poli-
cies for our voting example. EP1 requires the endorsement and com-
mitting of at least two organizations. Therefore, at most, one of the
four organizations can be Byzantine, so the other non-faulty orga-
nizations can prevent committing invalid transactions and keep the
application safe. With more than one Byzantine organization, the
client may collude with the Byzantine organizations and collect the
two required endorsements and commits for the invalid transactions,
and the non-faulty organizations cannot prevent it. However, the
voting application with EP2 is safe for up to three Byzantine orga-
nizations, as the remaining one non-faulty organization can prevent
the successful commit of invalid transactions. For liveness with EP1,

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

the client must communicate with at least two organizations. As
there are four organizations, liveness can tolerate two Byzantine
failures. However, the liveness of EP2 cannot tolerate any Byzantine
failures, as any faulty organization can hinder the transaction from
being endorsed or committed by all four organizations.

Formally speaking, foranapplicationwith theendorsementpolicy
EP : {qof n} and with up to f Byzantine organizations, the applica-
tion is safe if q≥ f +1. The application is also live if n−q≥ f . We
provide proof of the safety and liveness of OrderlessChain in Sec-
tion 8. The safety and liveness condition of OrderlessChain in a
Byzantine environment differs from the conventional 3f +1 require-
ment, as we do not require the organizations to coordinate to reach a
consensus. Instead, we use the permissioned property of the system
and the organizations’ known identity to endorse the transactions,
where consequently, thenon-faulty organizations prevent endorsing
and committing invalid transactions.

In the case of a network partition, an application with the en-
dorsement policy of EP : {qof n} can remain available if the number
of organizations in every partition satisfies the safety and liveness
requirements. Hence, OrderlessChain is available under network
partitions according to the CAP theorem [23], if in every partition
there exist at least q organizations, and once the network partition
is resolved, the state of partitions can be merged based on the tech-
niques discussed in this paper.

4 ARCHITECTUREANDPROTOCOL

OrderlessChain Architecture –Organizations are responsible
for hosting smart contracts, receiving and executing transactions,
and managing a replica of the application’s ledger. Every applica-
tion running on OrderlessChain makes use of an isolated ledger,
which contains the application state STOi . The application’s ledger
on every organization consists of two components: (1) an append-
only hash-chain log and (2) a database. The hash-chain log contains
all transactions the organization has received since the beginning
of time in a hash-chain data structure, ensuring the integrity of
transactions. If a Byzantine organization tampers with one trans-
action, the signature on the log and all succeeding transactions in
the hash-chain log will be invalid. By sequentially executing every
transaction in the hash-chain log, we reach the application state
STOi . For a more efficient approach and to avoid executing every
transaction each time STOi is required, an organization applies each
transaction to its database when appended to the log. Therefore, the
database represents the current application state STOi .

The messages are authenticated using digital signatures based on
a standard Public Key Infrastructure (PKI) [49]. Organizations and
clients use PKI to authenticate and sign transactions and verify the
integrity of the messages.

Developers create smart contracts, which are programs contain-
ing the application’s logic. The system supports executing Turing-
complete logic. Each smart contract can contain several functions
that encapsulate the logic of the application’s tasks.

Protocol and Transaction Lifecycle –OrderlessChain fol-
lows a two-phase execute-commit protocol. Clients first submit trans-
action proposals to be executed by organizations. If the first phase
succeeds, clients send the transactions to the organizations to be
committed. Figure 1 demonstrates the complete transaction lifecycle
for an application with endorsement policy EP : {qof n}.

Phase 1 / Execution Phase – The client prepares a transaction pro-
posal TPi containing the client’s identification, the smart contract’s
identifier, the function to be invoked, and the input parameters. The
client broadcasts the proposal to at least q organizations accord-
ing to the endorsement policy (EP) (Step 1 in Figure 1). Organiza-
tions receive the proposal and execute the smart contract with the
provided parameters. The execution result is a set of I-confluent
operations for modifying the application’s state, created based on
the CRDTmethodology. These I-confluent operations preserve the
application’s invariant conditions, which we explain in detail in the
following sections. The operations are added to awrite-set. Then, the
organization hashes and signs the write-set with its private key and
creates a signature. Finally, the organization delivers the write-set
with the created signature as a response (endorsement) to the client
(Step 2 in Figure 1). This signature ensures that the client or other or-
ganizations cannot tamperwith the operations in the endorsement’s
write-set, as tampering makes the signature invalid.

Organizationn
Client

Smart Contract

DB
 Append-
only Log

Organizationn-1

TP1

TP2

TP3

TP1

TP2

TP3

TP3

TP2

TP1

TP3

TP2

TP1

Organizationn

Organizationn-1

TS1

TS1

TS2

TS2

TS3

TS3

TS2

TS3

TS1

TS2

TS1

TS3

TS1

TS1

TS2

TS2

RCPT1

RCPT2

Execution Phase Commit Phase

REJ3

RCPT1

RCPT2

REJ3

Smart Contract

DB
 Append-
only Log

Step 2 Step 4

Step 4Step 2

Step 1

Step 1

Step 3

Step 3

Step 5

Figure 1: Transaction lifecycle on OrderlessChain.

Phase 2 / Commit Phase –The client waits until it receives themin-
imum number of endorsements required by the EP. If the write-sets
of all endorsements contain identical operations, the client assem-
bles a transaction TSi . The identical operations in the endorsements
show that organizations followed the same protocol for executing
the smart contract. Suppose some Byzantine organizations do not
execute the smart contract defined by the developer or based on
the provided input parameters. In that case, the operations will not
match those created by non-Byzantine organizations and will cause
the transaction to fail. The client adds the endorsement’s write-set
to the TSi’s write-set. The client hashes and signs the transaction’s
write-set with its private key to create a signature to ensure its in-
tegrity and includes it in the transaction. The client also includes
the received endorsements in the transaction. The client sends back
the transactions to at least q organizations as specified by the EP
(Step 3). These organizations could be different from those who ini-
tially endorsed the proposal. If an organization has yet to commit
the transaction, it validates and commits each received transaction
according to the definitions above. Before committing a transaction,
organizations verify whether the transaction’s endorsements and
the client’s signature are valid (signature validation) and whether
endorsements satisfy the EP to offer BFT. For verifying the validity
of endorsements and the client’s signature, the organization hashes

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

the transaction’s write-set and uses the public keys of endorsing or-
ganizations and the client to verify their signatures. This verification
shows that the endorsing organizations created identical write-sets,
and the client did not tamper with them. If the transaction passes the
signature validation, it is marked as valid and otherwise is invalid.

The organizations update their database with the write-set of
valid transactions, whereas all valid and invalid transactions are
appended to the hash-chain log. The invalid transactions are added
to the ledger for bookkeeping purposes. Since Byzantine clients can
create invalid transactions forDistributed Denial-of-Service (DDoS)
attacks, we discuss countermeasures of such behaviors in Section 8.
For appending the transaction to the log, the organization creates
a block Blockh :<TSi,Hash(Blockh−1)>, which contains the transac-
tion and the hash of the last block Blockh−1 in the log. Then, the
organization appends the created block to the log. For valid trans-
actions, a receipt RCPTi :HashAndSign(Blockh,Valid), including the
signed hash of the block containing the transaction, is sent to the
client (Step 4). If the transaction is invalid, the organization sends
a rejection REJi :HashAndSign(Blockh,Invalid) to the client. As the
receipt contains the hash of the block, which is dependent on the
hash of previous blocks in the log, the organization cannot modify
the content of the transaction without destroying and invalidating
RCPTi of TSi and other transactions. The client awaits receiving the
minimum number of receipts the EP requires. The client can archive
the transaction’s receipts for bookkeeping purposes.

After sending the client’s receipt, the organization periodically
gossips the transactions to other organizations to ensure every orga-
nization receives the client’s transactions (Step 5). Upon receiving
a transaction from another organization, the organization checks
the ledger to determine if the transaction has already been received
from other organizations or clients. If the transaction has already
been processed, the organization ignores it and avoids committing
it again; otherwise, it is committed following the above-explained
procedure. If a client sends a transaction that the organization has
received from other organizations or a duplicate transaction from
the client itself, it does not commit it again. Instead, a receipt or
rejection is sent to the client.

5 ORDERLESSCHAINAPPLICATIONS

By discussing two use cases, we explain the possible use cases of
OrderlessChain and the system’s internal approach for creating
CRDT-based I-confluent applications.

Application Modeling – To implement a use case in a smart
contract, we need to model the application as data structures that
match the use case’s description and contain the application’s data.
We discuss modeling two use cases:

Voting Application –One possible solution for modeling our run-
ning voting example in a smart contract is shown in Figure 2(a): For
every party participating in the election, we require a map contain-
ing key-value pairs. The key is the voter’s identification, and the
value is a register that stores a Boolean value for the vote sent by the
voter for this party.

Auction Application –Auction applications are among the com-
mon use cases of blockchains [22]. An auction is a highly concurrent
use case that can benefit from a coordination-free approach. Con-
sider an auction and a set of bidders {Bidder1, ...,Biddern}. The bidder
Bidderi submits bids. Each bid contains the amount it wishes to add

Table 1: Modification and read APIs of supported CRDTs.

CRDT Modification APIs Read API

G-Counter AddValue (value,clock) Read ()
CRDTMap InsertValue (key,value,clock) Read (key)
MV-Register AssignValue (value,clock) Read ()

to its previous bid. The bidder must be able only to increase its last
bid. Based on this description, we realize one invariant condition:
increase-only bids.

One possible design is as shown in Figure 2(b): Each auction is
modeled as amap containing key-value pairs. The key is the bidder’s
identification, and thevalue is acounter.Thecounter stores thecumu-
lative bids of the bidders. The counter’s value can only be increased,
and the value is increased with every new bid sent by the bidder.

Party1 Map

Keys: Voter1

Register:
Empty

Votern........

Register:
True

Auction Map

Keys: Bidder1 Biddern........

Counter:10 Counter:25Values: Values:

(a) Data structure of a participating party. (b) Data structure of an auction.

Figure 2: Applicationmodeling for the voting and auction.

CRDT Abstractions – CRDTs provide a solution for creating
commutative convergent operations, and we use CRDTs in smart
contracts. OrderlessChain’s protocol is independent of CRDTs
used in smart contracts. CRDTs are also replaceable with alternative
techniques that provide commutative operations, such as Opera-
tional Transformation [73]. However, many CRDTs exist for various
data types whose specifications must be supported by the smart
contract execution environment. In the current implementation,
OrderlessChain supports the specifications of grow-only coun-
ters (G-Counter) [70], CRDTMaps [37], and multi-value registers
(MV-Register) [37]. We chose these three CRDTs as they satisfy
the requirements of the voting and auction applications. Other use
cases may require further CRDTs. For enabling the support for other
CRDTs, their design requirements, based on the available literature,
must be added to the system [64, 70].

The three CRDTs represent the following data structures: (1)
G-Counter: It is a monotonically increasing numeric variable. (2)
CRDTMap: This CRDT is built upon amap data structure containing
key-value pairs. The key is an identifier, and the value can be any
object. (3)MV-Register: This is a shared variable capable of contain-
ing multiple values simultaneously. Every CRDT provides read APIs
and modification APIs for incrementing the G-Counter, inserting
a key-value pair to the CRDT Map, and assigning a value to the
MV-Register as shown in Table 1. Using the read APIs in the smart
contracts causes no side effects and requires no CRDT operation.
The developers create operations in the smart contract containing
the modification API calls. The value must be null for deleting a
value. Themodification APIs contain a logical clock used to infer the
happened-before relations. For creating more complex data struc-
tures, maps can be nested, where the value of the key-value pairs
can be either a new CRDTMap, G-Counter, or MV-Register.

These CRDTs are used for voting and auction applications as fol-
lows. Voting application: As previously shown in Figure 2(a), each

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

party is modeled as a map, and the voter’s votes are modeled as
key-value pairs in the party’s map where the values are registers.
Therefore, we use a CRDT Map to model the party’s map and the
MV-Register as the votes’ register. Auction application: As shown in
Figure 2(b), we use amap formodeling the auction and increase-only
counters for bids. Hence, we use a CRDTMap tomodel the auction’s
map and G-Counters to model the bids.

To evaluate an operation’s effects, the operation must be ap-
plied to the CRDT, which may cause conflicts. The CRDTs must
provide a built-in mechanism for resolving conflicts. We identify
the conflicting operations of the three CRDTs and offer a conflict
resolution accordingly. (1) G-Counter: As the operations increase
the counter’s value, the modification operations are inherently com-
mutative and cause no conflict. (2) CRDT Map: The modification
operations that modify different keys in the map are commutative
and non-conflicting and can be applied concurrently. However, the
operations that modify identical keys are conflicting. The conflict is
resolved based on the happened-before relations among operations.
If the happened-before relation canbe inferred, the operations are ap-
plied based on the relation; however, if the happened-before relation
cannot be inferred, a newmap is created, and the conflicting values
are added to the newmap as new key-value pairs, as shown in Fig-
ure 3. (3)MV-Register:OnMV-Register, everymodification operation
is conflicting, and the value of the register is determined based on
the happened-before relation among clocks. If the happened-before
relation cannot be inferred from the clocks, the register stores all
values, as shown in Figure 4.

Empty

Party1 Map

Voter1

VoteRegister2:
Empty

Party1 Map

Operation1: InsertValue(Voter1, VoteRegister1, Clock1)

Operation2: InsertValue(Voter1, VoteRegister2, Clock2)

Clock1 happened-before Clock2

Empty

Party1 Map

Voter1

Party1 Map

Operation3: InsertValue(Voter1, VoteRegister3, Clock3)

Operation4: InsertValue(Voter1, VoteRegister4, Clock4)

No happened-before relation between Clock3 and Clock4

Clock3

VoteRegister4:
Empty

VoteRegister3:
Empty

Clock4

Figure 3: Applying CRDTMapmodification operations.

VoteRegister1:
False

Party1 Map

Operation1: AssignValue(True, Clock1)

Operation2: AssignValue(False, Clock2)

Clock1 happened-before Clock2

Party1 Map

Operation3: AssignValue(True, Clock3)

Operation4: AssignValue(False, Clock4)

No happened-before relation between Clock3 and Clock4

Voter1

VoteRegister1:
[True, False]

Voter1

VoteRegister1:
Empty

Party1 Map

Voter1

VoteRegister1:
Empty

Party1 Map

Voter1

Figure 4: ApplyingMV-Registermodification operations.

6 IMPLEMENTATION

We implemented a prototype of OrderlessChain with the Go lan-
guage [3] and gRPC [20]. We open-sourced the code and the smart
contracts discussed in this paper 1.

1https://github.com/orderlesschain/orderlesschain

Smart Contracts –Developers use our Smart Contract Library
(SCL) for developing smart contracts and defining the logic of ap-
plications. The smart contract includes functions that encapsulate
different functionalities of the application. To enable developers
to interact with data stored on the ledger, SCL offers interfaces for
defining operations called CRDT APIs. Each client keeps track of a
Lamport clock [41], passed into the smart contract with proposals.
The client increments the clockwith every submitted proposal. Each
client’s Lamport clock is independent of the clock of other clients.
Furthermore, each CRDT object has a unique identification on the
ledger. The read API does not require creating any operation, and
SCL only requires the identification of the CRDT object to retrieve
it. For modifications, in addition to the identification of the CRDT
object, each operation includes four components: (1)Operation iden-
tifier: The identification of the operation is unique per CRDT object
and is a combination of the client’s identification and the client’s
Lamport clock. (2)Modification value and type: The value that the op-
erationmodifies and the type of CRDT. (3) Client’s clock: The client’s
Lamport clock. (4) Operation path: Developers can create nested
CRDT structures for creating more complex data structures. The
path specifies the location of themodification, starting from the root
of the CRDT object. For example, in the voting application with four
parties, the function in the smart contract creates four operations
for voting for party P1. One operation sets the voter’s MV-Register
on party P1 to true, and the other three operations set the voter’s
MV-Register on the other three parties to false. These four operations
are included in the write-set of proposals for vote submission.

Applying Transactions –Developers can implement functions
in smart contracts for invoking read APIs and retrieving the values
of CRDT objects. Subsequently, clients can submit proposals to an
organization Oi for reading the values. In our voting example, the
developer can implement a function to read the number of votes
submitted to a party. As OrderlessChain is an SEC system, the
application state STOi may diverge from the application states on
other organizations. Therefore, reading the values atOi only reflects
the modifications applied atOi .

To compute the CRDT object’s value in response to read API
calls, the organization should retrieve and apply every operation
in the ledger submitted for the CRDT object. As the number of op-
erations increases, the time required for applying operations also
increases. This increasing overhead is a well-known problem of
CRDTs [8, 39]. Hence, we implemented an optimization to address
this issue. Section 4 explains that the ledger contains a database
besides the hash-chain log. The database is updated with every valid
transaction. It consists of a conventional key-value database, namely
LevelDB [24], and an in-memory cache. Upon the transaction com-
mit, the operations are inserted into LevelDB.We do so as retrieving
the operations from LevelDB is more efficient than retrieving them
from the log during a cache miss. The value of the CRDT object in
the cache is updated with the transaction’s operations according to
Algorithm 1. In response to read API calls, the organizations return
the value of the CRDT object from the cache. This approach offers
read-your-writes consistency from the client’s point of view [60].

Algorithm 1 demonstrates our approach for applying each opera-
tion to the CRDT object. For every operation, before applying it, the
CRDT object is traversed from its root until it reaches the location
defined by the operation’s path (Line 3). As the object can be a nested

https://github.com/orderlesschain/orderlesschain

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

structure, parts of the path might not have been added to the object
yet. Therefore, themissing parts are created and added. Additionally,
the location contains the clocks of the previously applied operations.
Once the location for modification is reached (Line 4), the changes
are applied (Line 5). For applying the changes, as we explained in
the CRDT abstractions, the built-in conflict resolution is applied
depending on the type of object and the clocks of previously applied
operations. Additionally, the operation’s clock is appended to the
location’s clocks. The time and space complexity of Algorithm 1 is
O(n), where 𝑛 is the number of operations being applied.

Algorithm 1:Applying operations to the CRDT.
1 ApplyOperations (CRDTObj,Operations)

input :CRDTObj, a reference to the CRDT object.
input :Operations, the modification operations.

2 foreachOpi inOperations do
3 CRDTObj.Create (Opi .OpPath)
4 Location=CRDTObj.GetModifyLoc (Opi .OpPath)
5 CRDTObj.Apply (Location,Opi .Val,Opi .ValType,Opi .Clock)

In Section 8,weprove the SECproperty.However, first,wedemon-
strate that the application state STOi is independent of the order of
transactions. We formulate the following lemma:

Lemma 6.1. Independent of the processing order of transactions in
the transaction set {TS1,...,TSm} in organization Oi , application state
STOi converges to the same state for all i.

Proof. The write-set of every transaction in {TS1,...,TSm} only
contains CRDT modification operations. As CRDTs are provided
with a built-in conflict resolution mechanism, applying the opera-
tions in the write-set of operations using Algorithm 1 ensures that
transactions can be processed in any order while converging to the
same state. Hence, the convergence of STOi is independent of the
order of transactions. □

7 PRESERVING INVARIANTCONDITIONS

As explained in Section 2, organizations can commit a set of I-
confluent transactions in a coordination-free manner without addi-
tional validations while preserving the invariants. Since the CRDT
operations in the write-set of transactions modify the application’s
state, the operations must be I-confluent. Developers who define the
logic for creating operations in a smart contract must implement the
identified invariants as I-confluent operations.

In the case of our voting application, we realized themaximally
one vote per voter invariant. To determine that the invariant can be
preserved by creating I-confluent operations, we reason as follows:
Consider an election with two participating parties. As explained in
Section 6, every transaction TSVote that submits a vote has two oper-
ations in thewrite-set. One operation sets the voter’sMV-Register in
the elected party’s map to true. The other operation sets the voter’s
MV-Register for the non-elected parties to false.

As there is no coordination among organizations, the voter can
submit several votes. However, the maximally one vote per voter
invariant requires that we only count one of the votes. Consider the
following transaction set {TSVoter1Vote1 ,TS

Voter1
Vote2 }, submitted by Voter1,

as shown in Figure 5. Each transaction contains two operations.

Voter1 submitted two votes for two different parties, where there
exists a happened-before relation between operations in TSVoter1Vote1
and TSVoter1Vote2 . Therefore, independent of the order they are processed,
based on the CRDT’s conflict resolution mechanism, operations in
TSVoter1Vote2 overwrite the effects of operations in TSVoter1Vote1 . Hence, we
count only one of the votes submitted by the Voter1. Themaximally
one vote per voter invariant is preserved, and the transactions are
I-confluent concerning the invariant.

We can similarly reason that the auction application is I-confluent
concerning the increase-only bids invariant.

VoteRegister1:
False

Party1 Map

Voter1

VoteRegister1:
True

Party2 Map

Voter1

Operation1: {[Party1/Voter1], MV-Register, True, Voter1Clock1}

Operation2: {[Party2/Voter1], MV-Register, False, Voter1Clock1}

Operation3: {[Party1/Voter1], MV-Register, False, Voter1Clock2}

Operation4: {[Party2/Voter1], MV-Register, True, Voter1Clock2}

TSVoter1
Vote1 (Vote of Voter1 for Party1)

TSVoter1
Vote2 (Vote of Voter1 for Party2)

Voter1Clock1 and Voter1Clock2 from Voter1. Hence, Voter1Clock1 happened-before Voter1Clock2

Figure 5: Preserving the invariant for the voting application.

8 BYZANTINEACTORS

Organizations or clients are potentially Byzantine. We identify four
types of Byzantine faults by clients: (1) A Byzantine client may send
proposals to the organizations without sending the transaction to
be committed. This does not leave any lasting side effects. However,
it can be used for Distributed Denial-of-Service (DDoS) attacks. As
only authenticated clients can communicate with the organizations,
OrderlessChain can employ existing DDoS attack detection mech-
anisms [16] to revokeByzantine clients’ permissions. (2)AByzantine
clientmay only send transactions to a subset of organizations during
the commit phase. As the organizations gossip the transactions to
other organizations after committing the transaction, all organiza-
tions eventually receive the transactions. (3) Byzantine clients may
send different logical timestamps to different organizations for a pro-
posal. In this case, the operations in the endorsements do not match,
which prevents the creation of a valid transaction. (4) If the client
does not increment the clock with every proposal, the organizations
cannot infer happened-before relations between operations during
commit. As explained in Section 5, the proposed CRDT approach
can resolve the conflict of such operations without affecting other
clients’ operations. Therefore, Byzantine clients cannot jeopardize
the system.

To discuss the safety and liveness concerning Byzantine organi-
zations, we introduce the following theorem:

Theorem 8.1. Let the endorsement policy for an application be
EP : {qof n} with n≥q>0. Then, for up to f Byzantine organizations,
the application is safe if and only if q≥ f +1. Furthermore, the appli-
cation is live if and only if n−q≥ f .

Proof. According to our definition of safety and liveness, the
safe and live OrderlessChain must prevent committing invalid
transactions and eventually commit valid transactions. We identify

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

two types of Byzantine faults by organizations. Byzantine organi-
zations may attempt to jeopardize the system by either responding
with wrong messages or avoiding responding altogether. Wrong
messages include forged signatures from organizations and clients,
transactions with tampered or corrupted write-set operations, in-
correctly executed smart contracts, or duplicated or lost messages.
As the integrity of messages sent by organizations and clients can
be examined, the signatures cannot be forged, and the organizations
can independently prove the validity of organizations’ and clients’
signatures. As the system commits every transaction only once, and
multiple executions of proposals do not leave any lasting side effects,
duplication of messages has no effect. If the messages are suspected
to be lost, they can be resent. Additionally, if a client’s transaction
fails due to the Byzantine organizations’ wrong messages, the client
can resubmit theproposals to another set of organizations and resend
the transaction. On OrderlessChain, the developers identify and
define the application logic for creating I-confluent update opera-
tions. Therefore, the invariants are preserved as long as thewrite-set
operations are not tampered with and the smart contract is executed
as defined by the developer. Since the write-set of every endorse-
mentmust include identical operations, as long as there exists at least
one non-faulty organization among the q endorsing organizations,
which creates thewrite-set operations that canbedifferentiated from
the tampered operations or the incorrectly executed smart contract,
creating a valid transaction is impossible, and the application is safe.
Hence, the application is safe if and only if q≥ f +1.

Byzantine organizationsmay not respond to clients. For the appli-
cation to be live, the client must endorse and commit the transaction
on q among n organizations. Therefore, the transaction can reach at
leastqorganizations if andonly ifn−q≥ f . Therefore, theapplication
is live if and only if n−q≥ f . □

We demonstrated that liveness and safety depend on the appli-
cation’s endorsement policy. In other words, the safety and liveness
can be tailored to the application’s requirements. For example, for
the voting application with four parties, the regulation of a fair elec-
tion may dictate that all parties endorse every vote. Therefore, we
need EP : {4 of 4}. If the regulations demand the endorsement of at
most two parties, we can have an EP : {2 of 4}. Furthermore, since
the Byzantine behavior of organizations can be observed, and the
identity of organizations is known to each other, the organizations
have the incentive to behave honestly, as otherwise, they may face
the consequences. For example, a Byzantine party jeopardizing the
election may face legal consequences.

The following theorem demonstrates that STApp is SEC.

Theorem 8.2. Let the application be safe and live. Then, the appli-
cation’s world state STApp is SEC.

Proof. According to thedefinitionofSECinSection2, anSECsys-
temmust satisfy two requirements of eventual delivery of transactions
and strong convergence of nodes. In Theorem 8.1, we demonstrated
that every valid transaction is committed for a safe and live applica-
tion. Additionally, non-faulty organizations gossip the transaction
to other non-faulty organizations. Therefore, provided that the ap-
plication is safe and live, every non-faulty organization eventually
receives a valid transaction. Hence, eventual delivery of transactions
is satisfied.

In Lemma 6.1, we proved that independent of the order of transac-
tions in the transaction set {TS1,...,TSm}, the application state STOi

at organizationOi converges to the same state for all i. Since the even-
tual delivery of transactions requirement for the safe and live applica-
tion is satisfied, when the transaction set {TS1,...,TSm} is delivered
to the non-faulty organization Oi , the same set is delivered to every
other non-faulty organization. Therefore, according to Lemma 6.1,
all STOi converges to the same state, and the requirement strong
convergence of nodes is satisfied. Hence, the application’s world state
STApp of a safe and live application on OrderlessChain is SEC. □

9 EVALUATION

We first evaluate OrderlessChain. Then, we compare it to Fab-
ric [2], FabricCRDT [54], BIDL [66] and Sync HotStuff [1]. Fabric is
a permissioned blockchain capable of executing Turing-complete
applications. FabricCRDT (built as an extension on top of Fabric)
runs CRDT-enabled applications. BIDL is a permissioned blockchain
optimized for data center networks inspired by Fabric. Sync Hot-
Stuff introduces a synchronous BFT consensus protocol based on
the HotStuff protocol [80]. Fabric, FabricCRDT, and BIDL’s network
comprise organizations. We adjusted Sync HotStuff to employ the
concept of organizations. On Fabric and FabricCRDT, the clients
send the transactions to an ordering service for consensus and to
create a global order by batching transactions into blocks. Before the
transaction commits, Fabric’s organizations perform amulti-version
concurrency control validation (MVCC validation) to ensure that the
application’s invariants are preserved. FabricCRDT does not per-
form anMVCC validation and only merges the transaction values
using JSONCRDT techniques [37]. BIDL uses a central sequencer for
sequencing transactions. Afterward, it executes the transactions and
performs coordination-based consensus in parallel. Sync HotStuff
uses coordination- and leader-based consensus for ordering and
executing transactions.

We compare OrderlessChain to Fabric, FabricCRDT, BIDL, and
Sync HotStuff prototypes.We implemented the prototypes by study-
ing the available source code and following their concepts using
Go, gRPC, and LevelDB. We implemented these prototypes because
the original Fabric, FabricCRDT, and BIDL offer many security and
network-related features we do not implement in OrderlessChain.
These features impose performancepenalties andwouldhave caused
an increased transaction latency. For example, in the case of Fabric,
Gorenflo et al. [25] and Chacko et al. [14] offer extensive insights
on the performance penalties. We replicated the original implemen-
tations for a fair comparison since we intended to compare our
coordination-free protocol to their coordination-based protocols
independently of the implementation of the rest of the system. Fur-
thermore, the CRDT approach in FabricCRDT does not use the cache
we implemented as an optimization. For fairness, we also imple-
mented such a cache in FabricCRDT’s CRDT approach.

Experimental Applications – We developed a synthetic ap-
plication for evaluating OrderlessChain. Based on the examples
discussed, we also implemented voting and auction applications
for comparing OrderlessChain to the other four systems. Every
application consists of one smart contract, and in total, we developed
eleven smart contracts (available in the Git repository mentioned in

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

Section 6). Each smart contract has onemodify-function for modify-
ing the data on the ledger and one read-function for retrieving data
from the ledger.

Synthetic Application – For a controlled evaluation of Order-
lessChain, we implemented a synthetic application. The appli-
cation’s smart contract includes two functions Modify(ClientIdi,
Clocki,ObjCount,OpsPerObjCount,CRDTType) andRead (ObjCount).
TheModify function receives the client identification and clock, the
number of CRDTobjects and operations per eachCRDTobjectmodi-
fication, and theCRDTtype.Thewrite-set of the transaction includes
ObjCount ×OpsPerObjCount operations. The Read function reads a
specific number of CRDT objects as specified byObjCount.

Voting Application –We developed voting applications for all five
evaluated systems. The application’s smart contract for Orderless-
Chain has two functions: Vote(Voteri, Clocki,Partyj,Electionl) and
ReadVoteCount (Partyj,Electionl). For an election with n parties, the
Vote function results in n total operations (one operation per object)
in the write-set as explained in Section 6. ReadVoteCount retrieves
the current number of votes of Partyj . The smart contracts of the
other four systems also include Vote and ReadVoteCount functions,
which are implemented based on the best practices for developing
smart contracts on these systems [14, 54, 66].

Auction Application – The auction application’s smart contract
of OrderlessChain has two functions: Bid (Bidderi,Clocki,
BidIncreasei,Auctionj) and GetHighestBid (Auctionj). The Bid func-
tion includes one operation in its write-set for increasing the bid-
der’s G-Counter. GetHighestBid reads the current highest bid. The
smart contracts of the other four systems also include a Bid and a
GetHighestBid function.

Workloads, ControlVariables andMetrics –Each experiment
is executed on an initially empty ledger. We submit a workload con-
taining transactions invoking the modify- and read-functions in the
smart contracts, also referred toasmodify-and read-transactions. The
workload includes a specific percentage of modify-transactions and
read-transactions, uniformly distributed during the execution of the
experiment. Each organization receives a specific percentage of the
load on the system. We define the transaction arrival rate in transac-
tions per second (tps) of the systemas the total number of transactions
per second submitted by all clients to the system. The other control
variables are the number of organizations, endorsement policies, the
Byzantine failures, and the number of organizations to which each
organization gossips the transaction, which we refer to as theGossip
Ratio. The gossips are propagated at one-second intervals. For the
endorsement policies of EP : {qof n}, the clients send the proposals
and transactions to exactly q organizations. Each organization has
one node on Fabric, FabricCRDT, BIDL, and Sync HotStuff. Each
experiment is executed for 180 seconds. Fabric, FabricCRDT, and
BIDL use the Solo ordering service [2].

For the synthetic application, we used 1000 clients. ObjCount,
OpsPerObjCount, and CRDTType are control variables. We defined
1000 voters, eight elections, and eight parties per election for the
voting application. We defined 1000 bidders, eight auctions, and a
gradually growing number of bids for the auction application. We
chose these values according to the scalability evaluation of Fab-
ric done by other authors [14]. The input parameters for modify-
and read-transactions are randomly selected from these predefined
values based on a uniform distribution during the experiment.

Each experiment is executed at least three times, and the results
areaveraged.At theendof eachexperiment, theperformancemetrics
are collected. We measure the transaction throughput, the average
transaction latency, the 1st percentile transaction latency, and the 99th
percentile transaction latency. The transaction throughput is the total
number of successfully committed transactions divided by the total
time taken to commit these transactions. The transaction latency is
the response time per transaction from sending the proposal until
receiving the commit receipts from organizations, according to the
endorsement policy.

Experimental Setup – Each organization of the five studied
systems runs on an individual KVM-based Ubuntu 20.04 virtual ma-
chine (VM), and different organizations do not share VM resources.
Each VM uses 9.8 GB of RAM and four vCPUs. Since the VMs are
located within a single cluster and are connected via LAN, we used
Ubuntu’s NetEm (network emulation) and tc (traffic control) facilities
for adding 100msping delay, 4ms jitter, and 100Mb rate control to all
links for emulating aWAN.We chose these values by observing the
delays and bandwidth between two Ubuntu servers in two cities in
Europe and North America, provided by two cloud providers. Based
on studies that also use emulatedWANs [14] and our observations,
this setting fairly accurately emulates a realistic WAN. The ordering
service of Fabric, FabricCRDT, and BIDL, the sequencer of BIDL, and
the leader of SyncHotStuff runs on separate VMs.We also developed
a benchmarking tool that orchestrates a distributed deployment
of clients, generates and submits transactions, and collects perfor-
mance metrics. The benchmarking tool is inspired byHyperledger
Caliper [65], and its code is published with the system’s code.

Table 2: Control variables of synthetic application.

Control Variable Default Executed Configuration

(1) TS Arrival Rate 3000 tps {1000 tps, ..., 10,000 tps}
(2) Number of Orgs 16 Orgs {8 Orgs, ..., 32 Orgs}
(3) Endorsement Policy {4 of 16} {{2 of 16}, ..., {16 of 16}}
(4) Number of Obj 1 Obj {2 Objs, ..., 16 Objs}
(5) Operations per Obj 1 Op {2 Ops, ..., 16 Ops}
(6) CRDT Type G-Counter {G-Counter, MV-Register, Map}
(7) Workload (Read/Mdfy) R50M50 {R10M90, ..., R90M10}
(8) Workload per Org Uniform {Uniform, Normal Distribution}
(9) Gossip Ratio 1 Org {1 Org, ..., 15 Orgs}
(10) Byzantine Orgs 0 Failure {1 , 2 , 3 } Failures
(11) Byzantine Clients 0% Failure {50%, 75%, 100% } Failures
(12) Byzantine Orgs/Clients 0/0% Failure {3/50%, 3/75%, 3/100% } Failures

Experimental Results for Synthetic Application onOrder-

lessChain–Table 2 displays the control variables, their default val-
ues, and the executed experimental configurations for the synthetic
applicationonOrderlessChain.Oneof thecontrol variables is set to
the executed configurations, and the other control variables are set to
the default value. As shown in Figure 6(a), the throughput increases
with an increasing transaction arrival rate, but the latency rises.
We studied the effect of increasing the number of organizations on
throughput and latency, as shown in Figure 6(b). We set the endorse-
ment policy for each experiment to EP : {4 of NumberOfOrgs}. We
observe that the system scales for increasing organizations without
affecting the throughput and latency. As shown in Figure 7, we also
compared the average latency to throughput for an increasing num-
ber of organizations and arrival rates and observed that Orderless-
Chain scales. With an increasing number of organizations required

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

100
0tp
s

200
0tp
s

300
0tp
s

400
0tp
s

500
0tp
s

600
0tp
s

700
0tp
s

800
0tp
s

900
0tp
s

100
00t
ps

0

500

1,000

La
te
nc
y
(m

s)

(a) Transaction Arrival Rate
100

0tp
s

200
0tp
s

300
0tp
s

400
0tp
s

500
0tp
s

600
0tp
s

700
0tp
s

800
0tp
s

900
0tp
s

100
00t
ps

0

0.5

1
·104

8O
rgs

16O
rgs

24O
rgs

32O
rgs

0
200
400
600

(b) Number of Organizations

8O
rgs

16O
rgs

24O
rgs

32O
rgs

0

1,000
2,000
3,000

Th
ro
ug

hp
ut

(tp
s)

2of
16
4of
16
6of
16
8of
16
10o

f16
12o

f16
14o

f16
16o

f16
0

1,000

2,000

La
te
nc
y
(m

s)

(c) Endorsement Policy

2of
16
4of
16
6of
16
8of
16
10o

f16
12o

f16
14o

f16
16o

f16
0

1,000
2,000
3,000

2O
bjs
4O
bjs
6O
bjs
8O
bjs
10O

bjs
12O

bjs
14O

bjs
16O

bjs
0

0.5

1

1.5
·104

(d) Number of Objects

2O
bjs
4O
bjs
6O
bjs
8O
bjs
10O

bjs
12O

bjs
14O

bjs
16O

bjs
0

1,000

2,000

3,000

Th
ro
ug

hp
ut

(tp
s)

Modify Transactions Read Transactions Modify and Read Combined

Figure 6: Throughput, average, 1st, and 99thpercentiles transaction latencies for executed configurations of synthetic application.

0 0.5 1

·104

0

200

400

600

Throughput (tps)

La
te
nc
y
(m

s)

16 Orgs
24 Orgs
32 Orgs

Figure 7: Average latency

to throughput.

by the endorsementpolicy,weob-
serve that the latency increases
as the load on the organization
increases, as shown in Figure 6(c).
We observe in Figure 6(d) that
the latency increases for a larger
number of objects in the trans-
action due to the locking mecha-
nism used in the cache to avoid
concurrent reads and writes. The
results of experiments with con-
figurations 5 to 9 are explained in
the following and are not shown

in the figures due to space limitations. We observe that throughput
and latency are unaffected by the increasing number of operations
and are independent of CRDT types. We gradually decreased the
modify-transactions in the workload from 90 percent to 10 percent,
and we observed that the latency and throughput were unaffected.
We also changed the distributed workload per organization from a
uniform to anormal distribution,where someorganizations received
a higher percentage of theworkload.Wedid not observe a significant
difference except for the slight increase in latency for the higher-
loaded organizations. We did not observe a significant change in
latency and throughput for an increasing gossip ratio either.

0 50 100 150
0

1,000
2,000
3,000

f :1

30 s

f :2

70 s

f :3

110 s

f :0

150 s

(a) Experiment Time (s)

Th
ro
ug

hp
ut

(tp
s)

0 50 100 150
0

1,000
2,000
3,000

f :1

30 s

f :2

70 s

f :3

110 s

f :0

150 s

(b) Experiment Time (s)

Th
ro
ug

hp
ut

(tp
s)

Figure 8: Experiments with Byzantine organizations.

We studied the effects of Byzantine failures. First, as shown in Fig-
ure 8(a), three randomly selected organizations behave arbitrarily for

a specific period while all clients are non-faulty. The Byzantine orga-
nizations either randomly avoid responding to clients or endorse the
proposals incorrectly. The Byzantine organizations also randomly
avoid forwarding the transactions to other organizations. We in-
cluded three Byzantine organizations as, based on the EP : {4 of 16},
the safety and liveness of the application can tolerate up to three
Byzantine failures, and this is the worst-case scenario for organiza-
tions. We observed that the throughput decreases with every Byzan-
tine failure. However, the latency is not affected (not shown in the
figures). The decreasing throughput is due to clients being unable to
collect the minimally required valid endorsements. Since clients can
observe organizations that wrongly endorse or do not respondwhile
others respond with lower latency, they can avoid Byzantine orga-
nizations. To demonstrate this, we ran experiments where clients
randomly selected another organization.As shown inFigure 8(b), the
throughput returns to its pre-failure value immediately after clients
avoid the Byzantine organizations, as shown by the solid green lines.
We also ran experiments where all organizations were non-faulty
with an increasing percentage of Byzantine clients, randomly either
not sending the transactions for commit after the execution phase
or tampering with the transaction’s write-set. We observed that all
faulty transactions are rejectedwhile the latency is unaffected, show-
ing the system stays safe and live (results are not plotted). Finally,
we executed experiments with three Byzantine organizations with
an increasing percentage of Byzantine clients. Similar to previous
Byzantine experiments, we observed the decreased throughputwith-
out affecting latency, and the system remained safe and live with no
extra cost due to Byzantine failures.

Vote and Auction Applications –We compared Orderless-
Chain with Fabric and FabricCRDTwith 8 organizations for each
system and the EP : {4 of 8}. Then, we compared it with BIDL and
Sync HotStuff with 16 organizations for each of the three systems
and the EP : {4 of 16}. We did so as the configuration with 16 organi-
zations for Fabric and FabricCRDT caused the failure of a significant
portion of transactions due to their coordination-based approach
limitations, which prevented us from providing meaningful insights.
Also, for FabricCRDT and Sync HotStuff, we observed that latency

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0

200

400

600

La
te
nc
y
(m

s)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0

0.5

1
·105

52
2
/5
20

53
2
/5
29

55
0
/5
47

(c) Voting Application Latency for an Increasing Transaction Arrival Rate (tps)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0

0.5

1

·105

57
2
/6
01

14
5
/1
44

92
/1
44

56
/5
6

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s 0

500

1,000

Th
ro
ug

hp
ut

(tp
s)

(a) Voting Application Throughput

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0

200

400

600

OrderlessChain

La
te
nc
y
(m

s)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0

0.5

1
·105

53
8
/5
38

52
9
/5
28

54
0
/5
40

69
7
/7
02

Fabric

(d) Auction Application Latency for an Increasing Transaction Arrival Rate (tps)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

0
1
2
3
4

·105

FabricCRDT

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s 0

500

1,000

Th
ro
ug

hp
ut

(tp
s)

(b) Auction Application Throughput

OrderlessChainModify Fabric Modify FabricCRDTModify OrderlessChain Read Fabric Read FabricCRDT Read

Figure 9: Experiments with voting and auction applications on OrderlessChain, Fabric, and FabricCRDT.

significantly increases for a higher transaction arrival rate due to
FabricCRDT’s CRDT implementation and Sync HotStuff’s leader-
based approach, so we limited the transaction latency for them to
240 seconds, after which they are timed out and not considered for
throughput and latency evaluation.

As shown in Figures 9(a) and (b), we observe that Orderless-
Chain demonstrates a higher throughput for both applications. On
Fabric, the failed transactions due to theMVCCvalidation, explain its
low throughput. Although we used caching for the CRDT approach
in FabricCRDT, the CRDT approach still is a bottleneck. As shown
in Figures 9(c) and (d) (for the lower values, the average latencies
are written on the plots), OrderlessChain’s latency remains con-
stant under increasing arrival rates. Fabric’s latency significantly
increases for higher arrival rates. The reason is that Fabric’s central
ordering service for consensus is a bottleneck, as shown in Table 3
for the 2500 tps of the voting application (the results do not include
the addedWAN network latency on the client side). The increased
latency causes more transactions to fail due to MVCC validation.
FabricCRDT demonstrates irregular latency patterns as timed-out
transactions are not considered. As demonstrated in Figures 10(a)
and (b), we observe that although both BIDL and Sync HotStuff scale
better than Fabric and FabricCRDT, OrderlessChain demonstrates
a higher throughput for both applications. Furthermore, Order-
lessChain’s latency stays constant as the latency of BIDL and Sync
HotStuff significantly increases for higher arrival rates.As the design
of BIDL is highly optimized for data center networkswith high band-
width and low network latency, their proposed coordination-based
approach for consensus and BIDL’s central sequencer, becomes a
bottleneck in aWAN setup with limited bandwidth and higher net-
work latency, as shown in Table 3 for the 4000 tps of the voting
application. These results corroborate the findings in the BIDL paper.
For Sync HotStuff, the main bottleneck is the leader component in
their coordination-based approach.

We observe that for identical configurations, the organizations of
allfivesystemsutilize thesameamountofmemoryonaverage.Forex-
ample, each organization of OrderlessChain and Fabric consumes
on average 400Mb of Heap for the 2500 tps of the voting application.
However, the CPUutilization of OrderlessChain is higher than the
utilization of other systems. For example, the Fabric organization’s
CPU utilization for the 2500 tps of the voting application is, on aver-
age, at 30%, whereas the OrderlessChain organization is at 50%.
This higher utilization is attributed to applying theCRDToperations
to the cache. However, as applying the modifications to the cache
is done sequentially due to the employed locking mechanism, the
higher CPU utilization for cache operations is bounded. The main
limitation of OrderlessChain is the cache’s locking mechanism to
avoid concurrent reads and writes due to Go language constraints,
which can be addressed using other technologies that offer lock-free
data structures.

Table 3: Breakdown average transaction processing time.

OrderlessChain (ms) Fabric (ms) BIDL (ms) Sync HotStuff (ms)

P1/Execution: 64 P1/Endorse: 59 P1/Sequence: 346 P1/Consensus: 5532
P2/Commit: 110 P2/Consensus: 17270 P2/Consensus: 6803 P2/Commit: 6

P3/Commit: 11 P3/Execution: 54
P4/Commit: 1

Discussion – We do not require coordination for preserving
I-confluent invariants. However, coordination is required for ap-
plications with non-I-confluent invariants. Suppose we require an
invariant to specify a deadline for the end of an election, after which
the votes are rejected. This is a non-I-confluent invariant and re-
quires coordination. One approach for enabling OrderlessChain
to preserve such invariants is extending it with coordination-based
protocols of Fabric and enabling this protocol when required. For
example, given that the end of an election specifies only a short time
of the whole time this event runs, which can be up to a few hours or
days, the coordination-based protocol can be enabled only when we

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0
200
400
600

La
te
nc
y
(m

s)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0

0.5

1

·105

40
8
/4
07

38
8
/3
87

39
1
/3
89

44
5/
44
2

50
3/
51
2

(c) Voting Application Latency for an Increasing Transaction Arrival Rate (tps)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0
1
2
3
4 ·104

28
0
/2
78

26
8
/2
66

27
2
/2
71

27
6
/2
75

28
1
/2
82

43
7
/4
17

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s 0

500
1,000
1,500
2,000

Th
ro
ug

hp
ut

(tp
s)

(a) Voting Application Throughput

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0
200
400
600

OrderlessChain

La
te
nc
y
(m

s)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0

0.5

1

·105
40
0
/3
99

38
7
/3
86

39
0
/3
90

44
0/
44
1

50
8/
50
9

BIDL

(d) Auction Application Latency for an Increasing Transaction Arrival Rate (tps)

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s

0

2

4

6
·104

28
5
/2
85

26
6
/2
66

27
1
/2
70

27
4
/2
74

28
1
/2
80

55
1
/5
37

Sync HotStuff

500
tps

100
0tp
s

150
0tp
s

200
0tp
s

250
0tp
s

300
0tp
s

350
0tp
s

400
0tp
s 0

500
1,000
1,500
2,000

Th
ro
ug

hp
ut

(tp
s)

(b) Auction Application Throughput

OrderlessChainModify BIDLModify Sync HotStuffModify OrderlessChain Read BIDL Read Sync HotStuff Read

Figure 10: Experiments with voting and auction applications on OrderlessChain, BIDL, and SyncHotStuff.

are near the end. Otherwise, we use our scalable coordination-free
protocol.

There exists an extensive range of I-confluent CRDT-based use
cases [10, 13, 17, 32, 33, 39, 47, 50, 52, 58, 69, 74–77, 81, 82], from
key-value stores to collaborative environments, which can be im-
plemented on OrderlessChain. Also, CRDT-based and I-confluent
development tools such asAutomerge [36],Katara [40] and Lucy [78]
for modeling and expressing various applications can be adapted to
OrderlessChain to offer BFT. Katara offers a solution for automati-
cally creating CRDTs from sequential non-CRDT implementations.
Lucy provides an environment for determining whether invariant
conditions are I-confluent. We developed other applications [55–
57] (not evaluated here) as proof of concept. We implemented an
IoT-based supply chainuse case tomonitor thehealthof temperature-
sensitive products during transit. We also implemented a trusted
distributed file storage system and a private Federated Learning sys-
tem by extending OrderlessChain with customized CRDTs. The
development of these applications onOrderlessChainwas straight-
forward.

10 RELATEDWORK

The low scalability of PoW-based protocols makes them infeasible
for permissioned blockchains such asMultiChain [26],R3Corda [28],
Quorum [51], and Fabric [2], which use various non-PoW-based
coordination-based protocols. Although these protocols improve
performance, the required coordination among nodes negatively
affects performance. Also,many transactions fail due to Fabric’s opti-
mistic coordination-basedprotocol [14, 71].Also, theRaft-based [59]
ordering service of Fabric is not BFT. Other studies propose BFT or-
derers [7, 9].

Reducing coordination to improve scalability while preserving in-
variants has been an active field of research. Several studies propose
solutions in non-Byzantine systems [5, 6, 42–46, 61, 62]. However,
they do not consider the added complexity of Byzantine failures

for preserving invariants. Some works reduce coordination while
offering BFT and preserving invariants [27, 38, 48, 63, 67]. However,
they do not eliminate the coordination or have limited use cases.

Bailis et al. [4] introduced I-confluence, which shares similarities
with Left Commuting Operations [21] for identifying the possible
order of operations to persevere the application’s serializability. It
also shares similarities with the CALM theorem [29], demonstrating
that monotonic transactions can be processed coordination-free.

Studies propose coordination-based BFT approaches for exe-
cuting CRDT applications [18, 19, 72, 83]. However, only some
works study CRDTs in blockchains. Vegvisir [34] study integrat-
ing CRDTs with a Directed Acyclic Graph-structured blockchain
without support for executing smart contracts. RAMBLE [31] pro-
poses a blockchain-based Twitter-like messaging protocol based
on CRDT sets.MEChain [79] proposes a CRDT-enabled blockchain-
based system for storing electronic health records. Setchain [12]
decreases coordination in blockchains by only partially ordering
transactions. However, their solution is only limited to grow-only
sets and still requires some round of coordination. FabricCRDT [54]
uses coordination-based JSON CRDT techniques. The difference
between FabricCRDT and OrderlessChain, besides our system
enabling BFT CRDTs in a coordinate-free environment, is Fabric-
CRDT’s state-based CRDT approach. For every modification on
FabricCRDT, the entire object stored on the ledger must be retrieved
and modified and then sent to organizations to be merged with the
existing objects. On FabricCRDT, the objects gradually become large,
negatively affecting the performance, as observed here.

11 CONCLUSIONS

We presented OrderlessChain, a BFT coordination-free permis-
sioned blockchain capable of hosting and executing an extensive
range of safe and live CRDT-based I-confluent applications. Our
evaluation shows that a coordination-free permissioned blockchain
performs significantly better than coordination-based approaches
for applications with I-confluent invariant conditions.

OrderlessChain: A CRDT-based BFT Coordination-free BlockchainWithout Global Order of Transactions Middleware ’23, December 11–15, 2023, Bologna, Italy

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. 2020. Sync HotStuff: Simple
and Practical Synchronous State Machine Replication. In 2020 IEEE Symposium on
Security and Privacy. IEEE, 106–118. https://doi.org/10.1109/SP40000.2020.00044

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D.
Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B.
Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić,
S. W. Cocco, and J. Yellick. 2018. Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys
Conference. ACM, 30:1–30:15. https://doi.org/10.1145/3190508.3190538

[3] The Go Authors. 2023. Golang, Go Programming Language. https://golang.org/
Accessed: 2023-09-12.

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. 2014.
Coordination Avoidance in Database Systems. Proc. VLDB Endow. (2014), 185–196.
https://doi.org/10.14778/2735508.2735509

[5] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and M.
Shapiro. 2015. Putting Consistency Back into Eventual Consistency. In Proceedings
of the Tenth European Conference on Computer Systems. ACM. https://doi.org/10.
1145/2741948.2741972

[6] V.Balegas,D. Serra, S.Duarte,C. Ferreira,M. Shapiro, R.Rodrigues, andN.Preguiça.
2015. Extending Eventually Consistent Cloud Databases for Enforcing Numeric
Invariants. In 2015 IEEE 34th Symposium on Reliable Distributed Systems. IEEE,
31–36. https://doi.org/10.1109/SRDS.2015.32

[7] A. Barger, Y. Manevich, H. Meir, and Y. Tock. 2021. A Byzantine Fault-Tolerant
Consensus Library for Hyperledger Fabric. In 2021 IEEE International Conference
on Blockchain and Cryptocurrency. IEEE, 1–9. https://doi.org/10.1109/ICBC51069.
2021.9461099

[8] J. Bauwens and E. Gonzalez Boix. 2019. Memory Efficient CRDTs in Dynamic
Environments. In Proceedings of the 11th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages. ACM, 48–57. https://doi.org/10.
1145/3358504.3361231

[9] A. Bessani, J. Sousa, andM. Vukolić. 2017. A Byzantine Fault-Tolerant Ordering
Service for the Hyperledger Fabric Blockchain Platform. In Proceedings of the 1st
Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. ACM.
https://doi.org/10.1145/3152824.3152830

[10] R.Brown,S.Cribbs,C.Meiklejohn, andS.Elliott. 2014. RiakDTMap:AComposable,
ConvergentReplicatedDictionary. InProceedings of the FirstWorkshoponPrinciples
and Practice of Eventual Consistency. ACM, 1–1. https://doi.org/10.1145/2596631.
2596633

[11] C. Cachin and M. Vukolic. 2017. Blockchain Consensus Protocols in the Wild.
CoRR (2017). arXiv:1707.01873

[12] M. Capretto, M. Ceresa, A. F. Anta, A. Russo, and C. Sánchez. 2022. Setchain:
Improving Blockchain Scalability with Byzantine Distributed Sets and Barriers.
arXiv:2206.11845

[13] S. J. Castiñeira and A. Bieniusa. 2015. Collaborative Offline Web Applications
Using Conflict-free Replicated Data Types. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data. ACM. https://doi.org/
10.1145/2745947.2745952

[14] J. A. Chacko, R. Mayer, and H-A. Jacobsen. 2021. Why DoMy Blockchain Transac-
tions Fail? A Study of Hyperledger Fabric. ACM, 221–234. https://doi.org/10.1145/
3448016.3452823

[15] J.A.Chacko, R.Mayer, andH.-A. Jacobsen. 2023. HowToOptimizeMyBlockchain?
AMulti-Level Recommendation Approach. Proc. ACMManag. Data (2023). https:
//doi.org/10.1145/3588704

[16] R.Chaganti, B. Bhushan, andV.Ravi. 2022. TheRole ofBlockchain inDDoSAttacks
Mitigation: Techniques, OpenChallenges and FutureDirections. arXiv:2202.03617

[17] B.Chandramouli,G. Prasaad,D.Kossmann, J. Levandoski, J.Hunter, andM.Barnett.
2018. FASTER: A Concurrent Key-Value Store with In-Place Updates. In SIGMOD.
ACM, 275–290. https://doi.org/10.1145/3183713.3196898

[18] G. A. Di Luna, E. Anceaume, and L. Querzoni. 2020. Byzantine Generalized Lattice
Agreement. In IEEE IPDPS.

[19] S. Duan, M. K. Reiter, and H. Zhang. 2017. Secure Causal Atomic Broadcast,
Revisited. In 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 61–72. https://doi.org/10.1109/DSN.2017.64

[20] Cloud Native Computing Foundation. 2023. gRPC, a High Performance, Open-
Source Universal RPC Framework. https://grpc.io/ Accessed: 2023-10-10.

[21] R. FriedmanandK. Birman. 1996. TradingConsistency forAvailability inDistributed
Systems. Technical Report.

[22] H. S. Galal and A.M. Youssef. 2019. Verifiable Sealed-Bid Auction on the Ethereum
Blockchain. In Financial Cryptography and Data Security. Springer Berlin Heidel-
berg, 265–278.

[23] S. Gilbert and N. Lynch. 2012. Perspectives on the CAP Theorem. Computer 45
(2012), 30–36. https://doi.org/10.1109/MC.2011.389

[24] Google. 2021. LevelDB. https://github.com/google/leveldb Accessed: 2023-10-08.
[25] C. Gorenflo, S. Lee, L. Golab, and S. Keshav. 2019. FastFabric: Scaling Hyperledger

Fabric to 20,000 Transactions per Second. (2019), 455–463. https://doi.org/10.
1109/BLOC.2019.8751452

[26] G. Greenspan. 2015. Multichain Private BlockchainmWhite Paper. , 57–60 pages.
http://www.multichain.com/download/MultiChain-White-Paper.pdf Accessed:
2023-08-28.

[27] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, and D.-A. Seredinschi. 2019.
The Consensus Number of a Cryptocurrency. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. ACM, 307–316. https://doi.
org/10.1145/3293611.3331589

[28] M. Hearn and R. G. Brown. 2016. Corda: A Distributed Ledger. Corda Technical
White Paper 2016 (2016).

[29] J. M. Hellerstein. 2010. The Declarative Imperative: Experiences and Conjectures
in Distributed Logic. SIGMOD Rec. (2010), 5–19. https://doi.org/10.1145/1860702.
1860704

[30] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and Kim-Kwang R. Choo.
2021. The Application of the Blockchain Technology in Voting Systems: A Review.
ACMComput. Surv. (2021). https://doi.org/10.1145/3439725

[31] M. Imam,S.Takiar, and J.Wang. 2017. RAMBLE:ReliableAsynchronousMessaging
for Byzantine Linked Entities. (2017).

[32] K. Jannes, B. Lagaisse, andW Joosen. 2021. OWebSync: Seamless Synchronization
of DistributedWeb Clients. IEEE Transactions on Parallel and Distributed Systems
(2021), 2338–2351. https://doi.org/10.1109/TPDS.2021.3066276

[33] T. Jungnickel andL.Oldenburg. 2017. Pluto:TheCRDT-Driven IMAPServer. InPro-
ceedings of the 3rd International Workshop on Principles and Practice of Consistency
for Distributed Data. ACM. https://doi.org/10.1145/3064889.3064891

[34] K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse, and H.Weather-
spoon. 2018. Vegvisir: A Partition-Tolerant Blockchain for the Internet-of-Things.
In 2018 IEEE 38th International Conference on Distributed Computing Systems. IEEE,
1150–1158. https://doi.org/10.1109/ICDCS.2018.00114

[35] S. Kim, Y. Kwon, and S. Cho. 2018. A Survey of Scalability Solutions on Blockchain.
In 2018 International Conference on Information and Communication Technology
Convergence. 1204–1207. https://doi.org/10.1109/ICTC.2018.8539529

[36] M. Kleppmann. 2020. Automerge, A JSON-like CRDT. https://github.com/
automerge/automerge Accessed: 2023-10-11.

[37] M.KleppmannandA.R.Beresford. 2017. AConflict-FreeReplicated JSONDatatype.
IEEE Transactions on Parallel and Distributed Systems (2017), 2733–2746. https:
//doi.org/10.1109/TPDS.2017.2697382

[38] M. Kleppmann and H. Howard. 2020. Byzantine Eventual Consistency and the
Fundamental Limits of Peer-to-Peer Databases. CoRR (2020). arXiv:2012.00472

[39] M. Kleppmann, A.Wiggins, P. vanHardenberg, andM.McGranaghan. 2019. Local-
First Software: You Own Your Data, in Spite of the Cloud. In Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. ACM, 154–178. https://doi.org/10.1145/
3359591.3359737

[40] S. Laddad, C. Power, M. Milano, A. Cheung, and J. M. Hellerstein. 2022. Katara:
Synthesizing CRDTs with Verified Lifting. Proc. ACM Program. Lang. (2022).
https://doi.org/10.1145/3563336

[41] L. Lamport. 1978. Time, Clocks, and theOrdering of Events in aDistributed System.
Commun. ACM 21, 7 (1978), 558–565. https://doi.org/10.1145/359545.359563

[42] L. Lamport. 2005. Generalized Consensus and Paxos. (2005).
[43] L. Lamport. 2006. Lower Bounds for Asynchronous Consensus. Distributed

Computing (2006), 104–125. https://doi.org/10.1007/s00446-006-0155-x
[44] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. 2012. Making

Geo-Replicated Systems Fast as Possible, Consistent When Necessary. In OSDI.
USENIX Association, 265–278.

[45] J. Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers. 2014. Warranties for
Faster Strong Consistency. In USENIX NSDI. USENIX Association, 503–517.

[46] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. 2011. Don’t Settle
for Eventual: Scalable Causal Consistency forWide-Area Storage with COPS. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 401–416. https://doi.org/10.1145/2043556.2043593

[47] Y. Mao, Z. Liu, and H.-A. Jacobsen. 2022. Reversible Conflict-Free Replicated Data
Types. In Proceedings of the 23rd ACM/IFIP International Middleware Conference.
ACM, 295–307. https://doi.org/10.1145/3528535.3565252

[48] J.-P. Martin and L. Alvisi. 2006. Fast Byzantine Consensus. (2006), 402–411.
https://doi.org/10.1109/DSN.2005.48

[49] U. Maurer. 1996. Modelling a Public-Key Infrastructure. In European Symposium
on Research in Computer Security. Springer, 325–350.

[50] D. Mealha, N. Preguiça, M. C. Gomes, and J. Leitão. 2019. Data Replication on
the Cloud/Edge. In Proceedings of the 6th Workshop on Principles and Practice of
Consistency for Distributed Data. ACM. https://doi.org/10.1145/3301419.3323973

[51] J. P. Morgan Chase. 2018. A Permissioned Implementation of Ethereum. https:
//github.com/ConsenSys/quorum Accessed: 2023-10-08.

[52] M. Najafzadeh, M. Shapiro, and P. Eugster. 2018. Co-Design and Verification of an
Available File System. In Verification, Model Checking, and Abstract Interpretation.
Springer International Publishing, 358–381.

[53] S. Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[54] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2019. FabricCRDT: A Conflict-Free

Replicated Datatypes Approach to Permissioned Blockchains. In Proceedings of
the 20th International Middleware Conference. ACM, 110–122. https://doi.org/10.

https://doi.org/10.1109/SP40000.2020.00044
https://doi.org/10.1145/3190508.3190538
https://golang.org/
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1109/ICBC51069.2021.9461099
https://doi.org/10.1109/ICBC51069.2021.9461099
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3152824.3152830
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/2596631.2596633
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/2206.11845
https://doi.org/10.1145/2745947.2745952
https://doi.org/10.1145/2745947.2745952
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.1145/3588704
https://doi.org/10.1145/3588704
https://arxiv.org/abs/2202.03617
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1109/DSN.2017.64
https://grpc.io/
https://doi.org/10.1109/MC.2011.389
https://github.com/google/leveldb
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1109/BLOC.2019.8751452
http://www.multichain.com/download/MultiChain-White-Paper.pdf
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/3439725
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1145/3064889.3064891
https://doi.org/10.1109/ICDCS.2018.00114
https://doi.org/10.1109/ICTC.2018.8539529
https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://arxiv.org/abs/2012.00472
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3563336
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/3528535.3565252
https://doi.org/10.1109/DSN.2005.48
https://doi.org/10.1145/3301419.3323973
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540

Middleware ’23, December 11–15, 2023, Bologna, Italy P. Nasirifard, et al.

1145/3361525.3361540
[55] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2022. OrderlessChain: A CRDT-

Enabled Blockchain without Total Global Order of Transactions: Poster Abstract.
In Proceedings of the 23rd International Middleware Conference Demos and Posters.
ACM, 5–6. https://doi.org/10.1145/3565386.3565486

[56] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2022. OrderlessFile: A CRDT-Enabled
Permissioned Blockchain for File Storage: Poster Abstract. In Proceedings of the
23rd International Middleware Conference Demos and Posters. ACM, 15–16. https:
//doi.org/10.1145/3565386.3565491

[57] P. Nasirifard, R. Mayer, and H.-A. Jacobsen. 2022. OrderlessFL: A CRDT-Enabled
Permissioned Blockchain for Federated Learning: Poster Abstract. In Proceedings
of the 23rd International Middleware Conference Demos and Posters. ACM, 7–8.
https://doi.org/10.1145/3565386.3565487

[58] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. 2016. Near Real-Time Peer-
to-Peer Shared Editing on Extensible Data Types. In Proceedings of the 2016 ACM
International Conference on Supporting GroupWork. ACM, 39–49. https://doi.org/
10.1145/2957276.2957310

[59] D. Ongaro and J. Ousterhout. 2014. In Search of an Understandable Consensus
Algorithm. In 2014 USENIX Annual Technical Conference. USENIX Association,
305–319.

[60] Oracle. 2021. Read-Your-Writes Consistency. https://bit.ly/3dIAXOp Accessed:
2023-09-20.

[61] P. E. O’Neil. 1986. The Escrow Transactional Method. ACM Trans. Database Syst.
(1986), 405–430. https://doi.org/10.1145/7239.7265

[62] F. Pedone and A. Schiper. 1999. Generic Broadcast. In Distributed Computing.
Springer-Verlag, 94–108.

[63] M. Pires, S. Ravi, and R. Rodrigues. 2017. Generalized Paxos Made Byzantine
(and Less Complex). In Stabilization, Safety, and Security of Distributed Systems.
Springer International Publishing, 203–218.

[64] N. Preguiça. 2018. Conflict-free Replicated Data Types: An Overview.
arXiv:1806.10254

[65] Hyperledger Project. 2023. Hyperledger Caliper. https://hyperledger.github.io/
caliper/ Accessed: 2023-10-02.

[66] J. Qi, X. Chen, Y. Jiang, J. Jiang, T. Shen, S. Zhao, S. Wang, G. Zhang, L. Chen,
M.H. Au, andH. Cui. 2021. BIDL: AHigh-Throughput, Low-Latency Permissioned
BlockchainFramework forDatacenterNetworks. InProceedings of theACMSIGOPS
28th Symposium on Operating Systems Principles. ACM, 18–34. https://doi.org/10.
1145/3477132.3483574

[67] P. Raykov, N. Schiper, and F. Pedone. 2011. Byzantine Fault-Tolerance with Com-
mutative Commands. In Principles of Distributed Systems. 329–342.

[68] L. S. Sankar, M. Sindhu, and M. Sethumadhavan. 2017. Survey of Consensus
Protocols on Blockchain Applications. In 2017 4th International Conference on
Advanced Computing and Communication Systems. 1–5. https://doi.org/10.1109/
ICACCS.2017.8014672

[69] M. Shapiro, A. Bieniusa, N. M. Preguiça, V. Balegas, and C. Meiklejohn. 2018.
Just-Right Consistency: Reconciling Availability and Safety. CoRR (2018).
arXiv:1801.06340

[70] M. Shapiro, N. Preguiça, C. Baquero, andM. Zawirski. 2011. Conflict-Free Repli-
cated Data Types. In Symposium on Self-Stabilizing Systems. Springer, 386–400.

[71] A. Sharma, F.M. Schuhknecht, D. Agrawal, and J. Dittrich. 2019. Blurring the Lines
Between Blockchains and Database Systems: The Case of Hyperledger Fabric. In
Proceedings of the 2019 International Conference on Management of Data. ACM,
105–122. https://doi.org/10.1145/3299869.3319883

[72] A. Shoker, H. Yactine, and C. Baquero. 2017. As Secure as Possible Eventual
Consistency: Work in Progress. In Proceedings of the 3rd International Workshop
on Principles and Practice of Consistency for Distributed Data. ACM. https://doi.
org/10.1145/3064889.3064895

[73] D. Sun, S.Xia,C. Sun, andD.Chen. 2004. OperationalTransformation forCollabora-
tiveWord Processing. In Proceedings of the 2004 ACMConference on Computer Sup-
ported CooperativeWork. ACM, 437–446. https://doi.org/10.1145/1031607.1031681

[74] V. Tao, M. Shapiro, and V. Rancurel. 2015. Merging Semantics for Conflict Updates
inGeo-DistributedFileSystems. InProceedingsof the8thACMInternational Systems
and Storage Conference. ACM. https://doi.org/10.1145/2757667.2757683

[75] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and A. Bieniusa.
2017. Legion: Enriching Internet Services with Peer-to-Peer Interactions. In
Proceedings of the 26th International Conference onWorld WideWeb. ACM. https:
//doi.org/10.1145/3038912.3052673

[76] P. vanHardenbergandM.Kleppmann. 2020. PushPin:TowardsProduction-Quality
Peer-to-Peer Collaboration. In Proceedings of the 7thWorkshop on Principles and
Practice of Consistency for Distributed Data. ACM. https://doi.org/10.1145/3380787.
3393683

[77] S. Weiss, P. Urso, and P. Molli. 2009. Logoot: A Scalable Optimistic Replication
Algorithm for Collaborative Editing on P2P Networks. In 2009 29th IEEE Inter-
national Conference on Distributed Computing Systems. IEEE, 404–412. https:
//doi.org/10.1109/ICDCS.2009.75

[78] M.Whittaker and J.M.Hellerstein. 2020. Checking InvariantConfluence, InWhole
or In Parts. SIGMOD (2020), 7–14. https://doi.org/10.1145/3422648.3422651

[79] H. Y. Wu, L. Jie Li, H.-Y. Paik, and S. S. Kanhere. 2021. MEChain: A Multi-layer
Blockchain StructurewithHierarchical Consensus for Secure EHR System. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Computing and
Communications. IEEE, 976–987. https://doi.org/10.1109/TrustCom53373.2021.
00136

[80] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. 2019. HotStuff:
BFT Consensus with Linearity and Responsiveness. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. ACM, 347–356. https:
//doi.org/10.1145/3293611.3331591

[81] G. Younes, A. Shoker, P. S. Almeida, and C. Baquero. 2016. Integration Challenges
of PureOperation-basedCRDTs inRedis. In FirstWorkshop onProgrammingModels
and Languages for Distributed Computing. ACM, 7:1–7:4. https://doi.org/10.1145/
2957319.2957375

[82] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro. 2015.
Write Fast, Read in the Past: Causal Consistency for Client-Side Applications.
In Proceedings of the 16th Annual Middleware Conference. ACM, 75–87. https:
//doi.org/10.1145/2814576.2814733

[83] W. Zhao, M. Babi, W. Yang, X. Luo, Y. Zhu, J. Yang, C. Luo, and Mary Y. 2016.
ByzantineFaultTolerance forCollaborativeEditingwithCommutativeOperations.
In 2016 IEEE International Conference on Electro Information Technology. IEEE, 246–
251. https://doi.org/10.1109/EIT.2016.7535248

https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1145/3565386.3565486
https://doi.org/10.1145/3565386.3565491
https://doi.org/10.1145/3565386.3565491
https://doi.org/10.1145/3565386.3565487
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://bit.ly/3dIAXOp
https://doi.org/10.1145/7239.7265
https://arxiv.org/abs/1806.10254
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://doi.org/10.1145/3477132.3483574
https://doi.org/10.1145/3477132.3483574
https://doi.org/10.1109/ICACCS.2017.8014672
https://doi.org/10.1109/ICACCS.2017.8014672
https://arxiv.org/abs/1801.06340
https://doi.org/10.1145/3299869.3319883
https://doi.org/10.1145/3064889.3064895
https://doi.org/10.1145/3064889.3064895
https://doi.org/10.1145/1031607.1031681
https://doi.org/10.1145/2757667.2757683
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1145/3422648.3422651
https://doi.org/10.1109/TrustCom53373.2021.00136
https://doi.org/10.1109/TrustCom53373.2021.00136
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/2957319.2957375
https://doi.org/10.1145/2957319.2957375
https://doi.org/10.1145/2814576.2814733
https://doi.org/10.1145/2814576.2814733
https://doi.org/10.1109/EIT.2016.7535248

	Abstract
	1 Introduction
	2 Background
	3 System Model
	4 Architecture and Protocol
	5 OrderlessChain Applications
	6 Implementation
	7 Preserving Invariant Conditions
	8 Byzantine Actors
	9 Evaluation
	10 Related Work
	11 Conclusions
	References

